
NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS

Approved for public release; distribution is unlimited.

MODELING HUMAN AND ORGANIZATIONAL

BEHAVIOR USING A RELATION-CENTRIC MULTI-
AGENT SYSTEM DESIGN PARADIGM

by

Kimberly A. Roddy
and

Michael R. Dickson

September 2000

 Thesis Advisor: Michael Zyda
 Co-Advisor: John Hiles

i

 REPORT DOCUMENTATION PAGE
 Form Approved
 OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington,
VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2000

3. REPORT TYPE AND DATES COVERED
Masters Thesis

4. TITLE AND SUBTITLE
Modeling Human And Organizational Behavior Using A Relation-Centric
Multi-Agent System Design Paradigm

5. FUNDING NUMBERS

6. AUTHOR(S)
Roddy, Kimberly A. and Dickson, Michael R.

N0003900WRDR053
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Navy Modeling & Simulation Office, CNO, N6M
2000 Navy Pentagon, Washington, DC 20350-2000

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
The views expressed in this thesis are those of the authors and do not reflect the official policy or position of the Department of
Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
Today’s modeling and simulation communities are being challenged to create rich, detailed models

incorporating human decision-making and organizational behavior. Recent advances in distributed artificial
intelligence and complex systems theory have demonstrated that such ill-defined problems can be effectively
modeled with agent-based simulation techniques using multiple, autonomous, adaptive entities. RELATE, a
relation-centric design paradigm for multi-agent systems (MAS), is presented to assist developers incorporate MAS
solutions into their simulations. RELATE focuses the designer on six key concepts of MAS simulations:
relationships, environment, laws, agents, things, and effectors. A library of Java classes is presented which enables
the user to rapidly prototype an agent-based simulation. This library utilizes the Java programming language to
support cross-platform and web based designs. All Java classes and interfaces are fully documented using HTML
Javadoc format. Two reference cases are provided that allow for easy code reuse and modification. Finally, an
existing networked DIS-Java-VRML simulation was modified to demonstrate the ability to utilize the RELATE
library to add agents to existing applications. LCDR Kim Roddy focused on the development and refinement of the
RELATE design paradigm, while LT Mike Dickson focused on the actual Java implementation. Joint work was
conducted on all research and reference cases.

14. SUBJECT TERMS
Multi-agent system, MAS, human and organizational behavior, agent-based simulation,
adaptive agents, autonomous agents, relationship, RELATE, architecture

15. NUMBER OF PAGES

 16. PRICE CODE
17. SECURITY CLASSIFICA-
TION OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFI-
CATION OF ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL

 NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

ii

THIS PAGE INTENTIONALLY LEFT BLANK

iii

Approved for public release; distribution is unlimited

MODELING HUMAN AND ORGANIZATIONAL BEHAVIOR
USING A RELATION-CENTRIC MULTI-AGENT SYSTEM DESIGN PARADIGM

Kimberly A. Roddy

Lieutenant Commander, United States Navy
B.S., Oregon State University, 1987

Michael R. Dickson

Lieutenant, United States Navy
B.S., Hawaii Pacific University, 1992

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN
MODELING, VIRTUAL ENVIRONMENTS AND SIMULATION

from the

NAVAL POSTGRADUATE SCHOOL

September 2000

Approved by:

John Hiles, Co-Advisor

Michael Zyda, Thesis Advisor

Michael R. Dickson

Authors:

Kimberly A. Roddy

Michael Zyda, Chair
Modeling, Virtual Environments and Simulation Academic Group

Rudy Darken, Academic Associate
Modeling, Virtual Environments and Simulation Academic Group

iv

THIS PAGE INTENTIONALLY LEFT BLANK

v

ABSTRACT

Today’s modeling and simulation communities are being challenged to create

rich, detailed models incorporating human decision-making and organizational behavior.

Recent advances in distributed artificial intelligence and complex systems theory have

demonstrated that such ill-defined problems can be effectively modeled with agent-based

simulation techniques using multiple, autonomous, adaptive entities. RELATE, a

relation-centric design paradigm for multi-agent systems (MAS), is presented to assist

developers incorporate MAS solutions into their simulations. RELATE focuses the

designer on six key concepts of MAS simulations: relationships, environment, laws,

agents, things, and effectors. A library of Java classes is presented which enables the

user to rapidly prototype an agent-based simulation. This library utilizes the Java

programming language to support cross-platform and web based designs. All Java

classes and interfaces are fully documented using HTML Javadoc format. Two reference

cases are provided that allow for easy code reuse and modification. Finally, an existing

networked DIS-Java-VRML simulation was modified to demonstrate the ability to utilize

the RELATE library to add agents to existing applications. LCDR Kim Roddy focused on

the development and refinement of the RELATE design paradigm, while LT Mike

Dickson focused on the actual Java implementation. Joint work was conducted on all

research and reference cases.

vi

THIS PAGE INTENTIONALLY LEFT BLANK

vii

TABLE OF CONTENTS

I. INTRODUCTION... 1
A. MOTIVATION... 1
B. GOALS ... 3
C. ORGANIZATION .. 3

II. BACKGROUND ... 5
A. INTRODUCTION .. 5
B. KEY CONCEPTS AND TERMS... 6

1. Agent... 6
2. Multi-Agent System (MAS) ... 7
3. MAS Simulations.. 8
4. Relationship .. 10
5. Coordination ... 11
6. Adaptation... 13

C. ABBREVIATED HISTORY OF MULTI-AGENT SYSTEMS 14
1. Holland.. 14
2. Foundations of MAS... 15

a. Distributed Artificial Intelligence (DAI) .. 16
b. Artificial Life (A-Life).. 17

3. Significant MAS Simulations ... 18
a. MACE... 19
b. Echo .. 20
c. Swarm ... 21
d. SimCity ... 22
e. ISAAC... 23

D. SUITABILITY OF MULTI-AGENT SYSTEM SIMULATIONS 24
E. SURVEY OF SIMILAR MAS SIMULATION ARCHITECTURES...... 25

1. OAA.. 25
2. JAFMAS ... 26
3. Zeus... 26
4. JATLite ... 27
5. DECAF Agent Framework ... 28

F. MAS SIMULATIONS OF HUMAN AND ORGANIZATIONAL
BEHAVIOR.. 29

1. Sugarscape .. 29
2. Iterated Prisoner’s Dilemma ... 30
3. Unscrupulous Diner’s Dilemma ... 31
4. TheSims... 32

G. SUMMARY.. 33

viii

III. RELATE DESIGN PARADIGM AND ARCHITECTURE............................ 35
A. INTRODUCTION .. 35
B. RELATE DESIGN PARADIGM .. 36

1. Relationships... 38
2. Environment.. 40
3. Laws.. 40
4. Agents ... 41
5. Things ... 41
6. Effectors.. 42

C. BALLOON ANALOGY... 42
1. Strings ... 42
2. Balloons .. 43
3. Finding a Balloon.. 44
4. Buying a Balloon .. 44
5. Balloons That Pull... 45
6. Life With Lots Of Balloons .. 46

D. A RECIPE FOR MAS SIMULATIONS USING RELATE...................... 47
1. Define All Possible Relationships .. 47
2. Identify Roles For Each Relationship ... 48
3. Determine Goal/Rule/Action Types ... 49
4. Determine Goals For Each Role ... 50
5. Determine Rules For Each Goal ... 51
6. Determine Feedback Mechanism For Each Goal 52
7. Determine Credit Assignment For Each Rule 52
8. Implement Design By Satisfying RELATE Interfaces 53
9. Use Reference Cases As A Starting Point For GUI Development 53

E. RELATE JAVA CLASS AND INTERFACE DEFINITIONS 54
1. Public Class RelationshipManager ... 54
2. Public Abstract Class Thing Extends Object .. 55
3. Public Abstract Class Agent Extends Thing... 56
4. Public Interface Relationship.. 57
5. Public Interface Role... 57
6. Public Interface Goal .. 58
7. Public Interface Rule... 58
8. Public Interface Personality .. 58
9. Public Interface SensedEnvironment.. 59
10. Public Interface Sensor ... 59
11. Public Interface Action ... 60

F. SUMMARY.. 60

ix

IV. AN INTRODUCTORY MAS SIMULATION ... 61
A. INTRODUCTION .. 61
B. BRIAN ARTHUR’S EL FAROL BAR PROBLEM................................ 62
C. A RELATE RECIPE FOR THE EL FAROL BAR PROBLEM............... 63

1. Relationships... 63
2. Roles ... 63
3. Goal/Rule/Action Types ... 63
4. Goals ... 64
5. Rules ... 64
6. Feedback Mechanism.. 64
7. Credit Assignment .. 65

D. A RELATE SOLUTION ... 67
1. El Farol Rules ... 67
2. Graphical Output... 69

E. SUMMARY.. 70

V. ADDING AGENTS TO A NETWORKED DIS-JAVA-VRML
SIMULATION .. 71
A. INTRODUCTION .. 71
B. CAPTURE THE FLAG .. 72
C. A RELATE RECIPE FOR CTF AGENT.. 73

1. Relationships... 73
2. Roles ... 73
3. Goal/Rule/Action Types ... 73
4. Goals ... 74
5. Rules For Each Goal ... 74
6. Goal Feedback Mechanisms ... 74
7. Rule Credit Assignment.. 74

D. A RELATE SOLUTION ... 74
1. Red and Blue Start Panels... 75
2. Tank Agent.. 76

a. Engaging Enemy Units ... 76
b. Offensive Tank Agent... 77
c. Defensive Tank Agent .. 78

3. Helicopter Agent... 79
4. Squad Relationship ... 80
5. Future CTF Agent Work... 82

E. SUMMARY.. 83

x

VI. A SITUATED LAND-COMBAT MODEL .. 85
A. INTRODUCTION .. 85
B. JACOB (SON OF ISAAC) ... 85
C. A RELATE RECIPE FOR JACOB ... 86

1. Relationships... 86
2. Roles ... 86
3. Goal/Rule/Action Types ... 86
4. Goals ... 87
5. Rules For Each Goal ... 87
6. Goal Feedback Mechanisms ... 87
7. Rule Credit Assignment.. 89

D. A RELATE SOLUTION ... 89
1. Simulation Agent Editor ... 90
2. Loading and Saving Environments... 91

a. Using An Open Environment.. 91
b. Loading A Stored Environment .. 91
c. Creating A New Environment .. 92

3. Starting The Simulation .. 93
4. Pausing The Simulation .. 94
5. The Brain Lid.. 95
6. Dynamic Goal Selection ... 96

a. Forming A New Squad ... 97
b. Waiting For Stragglers.. 99

7. Agent Statistics ... 101
E. SUMMARY.. 102

VII. CONCLUSIONS AND RECOMMENDATIONS.. 103
A. CONCLUSION... 103
B. RECOMMENDATIONS.. 103

GLOSSARY... 105

APPENDIX A: SURVEY OF MAS SIMULATION ARCHITECTURES............. 107

APPENDIX B: RELATE RELEASE NOTES... 123

APPENDIX D: RELATE DESIGN FOR CTF AGENT ... 127

APPENDIX E: RELATE DESIGN FOR JACOB... 129

LIST OF REFERENCES... 133

INITIAL DISTRIBUTION LIST.. 139

xi

LIST OF FIGURES

Figure 1. Goal Satisfaction Representation .. 37

Figure 2. Strings (Potential Relationships Names)... 42

Figure 3. Balloons (Relationships) ... 43

Figure 4. Finding a Balloon (Joining an Existing Relationship)......................... 44

Figure 5. Buying a Balloon (Relationship Manager) ... 45

Figure 6. Balloons That Pull (Conflicting Goals) ... 46

Figure 7. Life With Lots Of Balloons (Multiple Relationships).......................... 46

Figure 8. Example Relationship Hierarchy and Role Assignment 48

Figure 9. Action-Decision Loop.. 50

Figure 10. Multiple Rules per Goal ... 53

Figure 11. El Farol Personality .. 66

Figure 12. Sample El Farol Rule Algorithms ... 68

Figure 13. El Farol Attendance Output .. 69

Figure 14. Red Start Panel with Agent Driven Selected.. 75

Figure 15. Offensive Tank Agent ... 77

Figure 16. Defensive Tank Agent... 78

Figure 17. Helicopter Agent ... 79

Figure 18. Capture The Flag Agent Squad... 81

Figure 19. Simulation Agent Editor for JACOB.. 90

Figure 20. Loading a JACOB Sample Environment ... 91

Figure 21. Adding Floor Objects in JACOB .. 92

xii

Figure 22. JACOB Sample Screen Shot .. 93

Figure 23. Battle Simulation in JACOB.. 94

Figure 24. JACOB Brain Lid ... 95

Figure 25. Blue Squad Approaching Stationary Red Agents................................ 97

Figure 26. Red Agents Forming Squad ... 98

Figure 27. Red Squad Moves To Enemy Flag .. 99

Figure 28. Waiting For Stragglers ... 100

Figure 29. Agent Statistics in JACOB ... 101

Figure 30. El Farol Design.. 126

Figure 31. CTFAgent Design.. 128

Figure 32. JACOB Design .. 131

xiii

LIST OF DEFINITIONS

Definition 1. Agent .. 7

Definition 2. Multi-Agent System (MAS).. 8

Definition 3. MAS Simulation .. 10

Definition 4. Relationship... 11

Definition 5. Coordination.. 12

Definition 6. Adaptation ... 14

xiv

THIS PAGE INTENTIONALLY LEFT BLANK

xv

 LIST OF EQUATIONS

Equation 1. Agent Goal Weight.. 88

Equation 2. Leader Goal Weight.. 88

Equation 3. Final Goal Weight ... 88

xvi

THIS PAGE INTENTIONALLY LEFT BLANK

xvii

LIST OF ABBREVIATIONS AND ACRONYM’S

2-D Two Dimensional

3-D Three Dimensional

ACL Agent Communication Language

AI Artificial Intelligence

A-Life Artificial Life

BACH Burks, Axelrod, Cohen, Holland

BT British Telecom

CAS Complex adaptive systems

CNA Center for Naval Analysis

CTF Capture The Flag

DAI Distributed Artificial Intelligence

DECAF Distributed, Environment-Centered Agent Framework

DIS Distributed Interactive Simulation

DMSO Defense Modeling and Simulation Office

DMVT Distributed Vehicle Monitoring Test

DoD Department of Defense

ENIAC Electronic Numerical Integrator And Calculator

GA Genetic Algorithm

GUI Graphic User Interface

ICL Interagent Communication Language

I/O Input/Output

ISAAC Irreducible Semi-Autonomous Adaptive Combat

xviii

ISAACA ISAAC Agent

JACOB Just Another Complex Organizational Battlefield

JAFMAS Java Agent Framework for MAS

JATLite Java Agent Template, Lite

JWARS Joint Warfare System

KQML Knowledge Query and Manipulation Language

LAN Local Area Network

LSVE Large Scale Virtual Environment

MACE Multi-Agent Computing Environment

M&S Modeling and Simulation

MAS Multi-Agent System

MOVES Modeling, Virtual Environments and Simulation

NPS Naval Postgraduate School

NRC National Research Council

OAA Open Agent Architecture

RELATE Relationship, Environment, Laws, Agents, Things, Effectors

SFI Santa Fe Institute

SRI Previously Stanford Research Institute, now simply “SRI”

VE Virtual Environment

VRML Virtual Reality Modeling Language

xix

ACKNOWLEDGEMENTS

The authors would like to acknowledge the financial support of the Navy
Modeling and Simulation Office, N6M, for sponsoring our work and that of the MOVES
Academic Group.

The authors would also like to thank Mr. John Hiles, who opened our eyes,
directed our gaze, and joined us on our path of discovery. He provided insight and
guidance during every phase of the development of this thesis and helped our agents get
out of the box. We would also like to express our appreciation to Dr. Michael Zyda for
his guidance and direction, not only as our thesis advisor, but as the Chair of the MOVES
Academic Group. Other members of the MOVES Academic Group that provided
invaluable assistance with Java code design issues include Dr. Michael Capps and Mr.
Don McGregor.

Finally, we would like to thank our families for their patience, love, support, and
sacrifices: Kim Roddy would like to express his appreciation to his wife, LCDR Sharon
Roddy, USN, and their two daughters Elise and Nicole. Mike Dickson would like to
thank his wife, Debbie for her endless support and understanding.

Famous woodcut appearing in

Camille Flammarion, L'Atmosphere: Météorologie Populaire (Paris, 1888), p. 163.

Although to penetrate into the intimate mysteries of nature
and thence to learn the true causes of phenomena is not
allowed to us, nevertheless it can happen that a certain
fictive hypothesis may suffice for explaining many
phenomena. - LEONHARD EULER

xx

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

The modeling of cognition and action by individuals and
groups is quite possibly the most difficult task humans have
yet undertaken. Developments in this area are still in their
infancy. Yet important progress has been and will continue
to be made. Human behavior representation is critical for
the military services as they expand their reliance on the
outputs from models and simulations for their activities in
management, decision making, and training.

– NATIONAL RESEARCH COUNCIL (1998)

A. MOTIVATION

Today’s modeling and simulation (M&S) communities are being challenged by

ever-increasing demands to create rich, detailed models of ill-defined problems. Most of

these problems are complex because of the involvement of human decision-making and

organizational behavior. Humans and organizations have multiple levels of internal

roles, goals and responsibilities, frequently conflicting with each other. Humans are

often “torn between two desires”, attempting to satisfy the demanding responsibilities

that come with the multiple roles often encountered in everyday life. While

contemplating almost any decision, humans must evaluate a myriad of goals that they are

currently attempting to achieve. These goals are sometimes supportive of each other,

especially if an individual is well organized. Often these goals conflict, such as when a

current goal a person is trying to achieve for his or her organization, e.g. finish a project

tonight, conflicts with their current personal goals, e.g. spend the evening with my

family. Developing simulations that are capable of capturing this complex, often

2

unpredictable, individual behavior is essential to realistically modeling large

organizations accurately.

Models of unparalleled complexity are being constructed in an effort to capture

key aspects of aggregate human behavior. Simulations currently in use range from

decision support aides and project management trainers, to simulated cities and armies.

A typical example is the theater level campaign model, such as the Joint Warfare System

(JWARS), currently being developed by the Department of Defense (DoD). JWARS

exhibits an unparalleled amount of combat realism and detail, but even its strongest

proponents suggest the need for more work on the human and organizational behavior

elements. Current JWARS decision-making mechanisms attempt to solve the problem by

using expert systems, finite state machines, and finally, actually placing a human in the

decision making loop (Maxwell & Raab, 1998). None of these methods can sufficiently

model the cooperation, coordination and conflict which is often seen in systems with

multiple, autonomous, adaptive entities. A better tool is needed to model both human

decision-making and organizational behavior.

Recent research in the field of distributed artificial intelligence (DAI) and

complex systems theory has demonstrated that ill-defined problems and complex systems

can be effectively modeled using agent-based simulation techniques (Arthur, 1994). To

satisfy many of today’s M&S challenges, a number of agent-based languages, toolkits,

and architectures have been developed. These tools provide the user the ability to

investigate ill-defined problems with multi-agent systems (MAS), which propose a

bottom-up, self-organized approach to modeling, sometimes referred to as distillations.

3

Although each agent-based tool is well suited to its particular design problem, most are

either difficult to obtain or install, expensive to acquire, or often can’t be applied or easily

adapted to a specific problem. An easy-to-use, inexpensive (e.g. open-source), platform-

independent, MAS simulation toolkit or library would be an invaluable resource. It

would aid students and researchers attempting to incorporate software agents and MAS

into their models and simulations. In conjunction, a straightforward design paradigm

would help developers leverage the power of what is widely becoming known as Agent-

Oriented Programming.

B. GOALS

Three main goals were taken up by this thesis, as summarized below:

• Develop a relation-centric MAS design paradigm that focuses on the

relationships that exist between agent and other things in the simulation.

• Design a Java-based MAS library based on the relation-centric design

paradigm that enables rapid prototyping and development of models that

simulate human and organizational behaviors.

• Demonstrate the functionality of this architecture by implementing models of

increasing complexity and scope, both situated and non-situated, as reference

cases.

C. ORGANIZATION

Chapter II is a review of background material and similar work supporting this

thesis. It develops key concepts and definitions while presenting a short history of agent-

4

based simulations. It also addresses the suitability of using MAS in addition to, or

instead of other modeling techniques. A survey of similar MAS simulation architectures

and toolkits is also presented, focusing on the original intention of the architecture being

surveyed. A sample of current MAS simulations used to model human and organizational

behavior is also provided for comparison to this work. Chapter III introduces the

RELATE design paradigm for building MAS simulations. It also provides a detailed

description of the development package of Java classes and interfaces presented in this

thesis, including class definitions and methodology of implementation. Chapter IV

describes the development of an introductory MAS simulation using the presented

RELATE design paradigm, illuminating key aspects of the development package.

Chapter V describes the development of a situated MAS simulation of a simplistic, two-

dimensional battlefield consisting of two armies with hierarchical organizational

structure. Chapter VI describes the incorporation of agents into an existing networked

DIS-Java-VRML simulation using the RELATE design paradigm and library. Chapter

VII provides conclusions and recommended future work. A glossary of terms is included

for easy reference and look-up of commonly used terms.

A number of Appendices are provided giving additional details and references for

this body of work. Appendix A is a survey of current MAS simulation architectures

including brief descriptions and web pointers to each. Appendix B provides release notes

for the presented RELATE Java classes, interfaces, and reference cases. Appendices C,

D, and E give details and illustrations of the three reference cases.

5

II. BACKGROUND

Carl Hewitt recently remarked that the question what is an
agent? is embarrassing for the agent-based computing
community in just the same way that the question what is
intelligence? is embarrassing for the mainstream AI
(Artificial Intelligence) community. The problem is that
although the term is widely used, by many people working
in closely related areas, it defies attempts to produce a
single universally accepted definition.

– MICHAEL WOOLDRIDGE & NICHOLAS JENNINGS

A. INTRODUCTION

Any discussion regarding MAS simulations should first be founded on a common

understanding, or at least acceptance, of key terms and concepts. Unfortunately, many of

the commonly used terms in the fields of DAI and MAS research do not have commonly

agreed upon definitions by the research communities. Entire papers have been written

addressing the concept of agency and attempting to find a common meaning of over a

dozen major researchers, e.g. (Franklin & Graesser, 1996). Many experts acknowledge

the difficulties of rigidly defining agency, and instead provide a list of properties

(Wooldridge and Jennings, 1995), or describe agents as multi-dimensional (Nwana,

1996). Section B of this chapter attempts to clarify specific key concepts and terms that

are significant for this body of research. A glossary of terms is provided at the end of the

thesis for quick reference to these and other frequently referred to terms. Armed with a

common vocabulary, it is also useful to have a basic knowledge of where this rapidly

growing field of research has come from, where it is now, and where it is presumably

going in the future. A short history of MAS research is given in Section C. For a more

6

detailed history, the reader is directed to (Russell and Norvig, 1995), (Weiss, 1999), and

(Ferber, 1999). Section D presents a discussion of the suitability of MAS simulations and

the type of applications they are best used for. Section E provides a brief summary of

Java-based MAS architectures and libraries that are similar to the current work, with

comments as to how they compare and contrast with the proposed package. Section F

provides selected examples of MAS simulations currently being used to model human

and organizational behavior. A summary of this chapter is provided in Section G.

B. KEY CONCEPTS AND TERMS

1. Agent

The remarks by Carl Hewitt at the beginning of this chapter (Wooldridge and

Jennings, 1995) are substantiated in the comments of many books, papers, and articles

whenever there is an attempt to define the term agent (Knapik & Johnson, 1998). Each

definition includes many of the same basic concepts, but also often adds to, or omits

from, the ‘consensus’ definition. One of the most commonly referenced definitions is in

the respected text by Russell and Norvig (1995) that states, “an agent is anything that can

be viewed as perceiving its environment through sensors and acting upon that

environment through effectors.” Other leading researchers believe that satisfying

objectives or goals is also a necessary attribute of an agent, e.g. (Maes, 1990 and 1995a),

(Ferber, 1999), (Wooldridge and Jennings, 1995). Russell & Norvig actually distinguish

this as a goal-based agent, which is one of four types of agents that build on their basic

7

agent definition. The other three are: simple reflex agents; agents that keep track of the

world; and utility-based agents.

An agent can be a software object, a robot, a living being, or anything that fulfills

the basic concepts of agency. In the context of this thesis, the use of the word agent will

always imply software agent as opposed to any other kind, unless specifically stated. The

following definition of an agent will be used:

Definition 1. Agent

For an in-depth comparison of leading researcher’s definitions of agency, as well

as descriptions of many additional ways to classify agents, such as reactive, autonomous,

mobile, etc., see (Franklin and Graesser,1996). To explore the diversification in the types

of agents being investigated, see (Nwana,1996).

2. Multi-Agent System (MAS)

I’ll call “Society of Mind” this scheme in which each mind
is made of many smaller processes. These we’ll call
agents. Each mental agent by itself can only do some
simple thing that needs no mind or thought at all. Yet
when we join these agents in societies--in certain very
special ways-- this leads to true intelligence.

– MARVIN MINSKY

Agent: A software object that perceives its environment through sensors
and acts upon that environment through effectors to achieve one or more
goals.

8

One of the most commonly recognized uses of the term agent can be traced to

Marvin Minsky’s famous book, “The Society of Mind” (1985). In the context of his

book, Minsky’s use of the term agent was effectively equated to process, which is

slightly different than the use by computer scientists today. The short quote above

indicates that Minsky’s work was possibly more closely related to a collection of agents

or MAS, rather than on individual agents. His work exploring how the human mind

actually works did lend some credibility, however, to the hypothesis that human decision-

making can be effectively modeled using MAS simulation techniques. Similar to the

term agent, it is difficult to find a commonly accepted definition of MAS. Huhns and

Stephens (1999) give the following characteristics of multi-agent environments: they

have communication and interaction protocols; they are self-organizing; they contain

distributed, autonomous agents that may be self-interested or cooperative. Ferber (1999)

defines MAS as comprising of the following elements: environment, objects, agents,

relations, operations, and laws. For the purposes of this thesis, the Weiss definition of

MAS will be used (Weiss, 1999):

Definition 2. Multi-Agent System (MAS)

3. MAS Simulations

The terms modeling and simulation are often used together, frequently

interchangeably, and sometimes incorrectly. Merriam-Webster’s “OnLine” dictionary

Multi-agent system (MAS): A system in which several interacting,
intelligent agents pursue some set of goals or perform some set of tasks.

9

defines the word model in many different ways (Merriam-Webster, 2000). The word can

be used as a noun, verb, or adjective, giving a slightly different meaning. The uses most

suitable to this field of research include the following:

• (noun) - A model is a description or analogy used to help visualize something

(as an atom) that cannot be directly observed.

• (noun) - A model is a system of postulates, data, and inferences presented as a

mathematical description of an entity or state of affairs.

• (verb) - To produce a representation or simulation of.

• (adjective) - Being a usually miniature representation of something.

Models used in most modern simulations are based on mathematical

underpinnings, describing relationships between system variables that represent physical

aspects of reality. Common modeling methods include differential equations, rule-based

“if-then” systems, and other more specific methods tailored to the subject being modeled.

A classical example are “Lanchester Equations,” or LEs, which are a set of coupled

ordinary differential equations modeling attrition in modern warfare. Ilachinski (1997)

discussed various shortcomings of LEs when attempting to capture individual behavior in

land combat models. By contrast, agent-based models are “a way of doing thought

experiments,” the goal of which is to “enrich our understanding of fundamental processes

that may appear in a variety of applications” (Axelrod, 1997). Holland (1998) discusses

dynamic models and states that the object of creating such models is “to find unchanging

laws that generate the changing configurations.” He points out that these laws

correspond roughly to the rules of a game.

10

Simulations attempt to model reality over a period of time. The National

Research Council (1998) describes simulations as methods for implementing a model to

play out the represented behavior over time. Ferber (1999) describes simulations as

methods to analyze real-world properties of theoretical models. A classic AI view of

computer simulations is that they can be thought of as problem-solving processes that

attempt to predict the future state of a real system by studying an idealized computer

model (Widman and Loparo, 1989). Simulations are used for more than just predicting

future state. They are also be used to practice and rehearse problem-solving skills

(Thinking Tools, 1999), to help provide insight and understanding of complex systems

(Holland, 1995 & 1998), to “study life as it could be” (Langton, 1989), or to simply

entertain in either a realistic or fantasy manner. The list of uses of computer simulations

is almost as long as the list of developers creating them. Agent-based simulations in

particular are used “to study the emergent properties of the interactions among agents”

(Axelrod, 1997). The following definition of a MAS simulation will be used (Hiles,

1999):

Definition 3. MAS Simulation

4. Relationship

The word relationship can be used to mean slightly different things due to the

multiplicity of the English language. The use of relationship in this thesis does not

MAS Simulation: A rich, bottom-up modeling technique that uses
diverse, multiple agents to imitate selected aspects of the real world
system’s active components.

11

directly refer to kinship nor, necessarily, the physical juxtaposition of objects. Rather,

Ferber’s (1999) definition is taken that a relationship is the “assembly of relations that

link certain individuals to others.” The next step is to define relation. Again, turning to

Merriam-Webster (2000), one finds seven different uses of the word. Significant to this

research, it is important not to confuse the uses that imply association or resemblance

such as in the phrase ‘the relation of time and space’ or the uses that imply a

mathematical property between an ordered pair of objects such as that expressed by is

equal to or is less than. Instead, a relation in the context of this thesis, satisfies the

following properties:

• The attitude or stance which two or more persons or groups assume toward

one another.

• The state of being mutually or reciprocally interested.

The following definition will be used for this thesis:

Definition 4. Relationship

5. Coordination

DAI primarily focuses on coordination as a form of
interaction that is particularly important with respect to
goal attainment and task completion. The purpose of
coordination is to achieve or avoid states of affairs that are
considered as desirable or undesirable by one or several
agents. - GERHARD WEISS

Relationship: The assembly of relations, i.e. understandings and/or
commitments, between mutually interested parties that link certain
individuals to others.

12

As the next section will establish, there is a strong tie between DAI and MAS, and

the quote above could just as easily be said about MAS. Coordination can include

cooperation or competition (or conflict), depending if the elements of the system are

working together to achieve a common goal, or more concerned with maximizing

individual performance, even at the expense of others (Weiss, 1999). Malone (1988) uses

the broader, common sense definition of coordination: “the act of working together

harmoniously,” for the basis of his work. He goes on to list the following common

problems of coordination theory:

• How can overall goals be subdivided into actions?

• How can actions be assigned to groups or to individual actors?

• How can resources be allocated among different actors?

• How can information be shared among different actors to help achieve the

overall goals?

Ferber (1999) interprets Malone’s work describing the coordination of actions as

“the set of supplementary activities which need to be carried out in a multi-agent

environment, and which a single agent pursuing the same goals would not accomplish.”

Malone’s more narrow definition of coordination is used for this thesis:

Definition 5. Coordination

Coordination: The act of managing interdependencies between activities
performed to achieve a goal.

13

6. Adaptation

If an agent uses feedback to modify its decision-making process, it is no longer

simply reacting to its environment, it is also adapting to form a better fit to it. Learning

and adaptation are closely related, with learning actually being a means to adaptation

(Scott, 1958). Merriam-Webster (2000) defines learning in this context as:

• Knowledge or skill acquired by instruction or study.

• Modification of a behavioral tendency by experience (as exposure to

conditioning).

When one talks of adaptation of a species, the time scale is now much longer,

spanning multiple generations, and is usually considered evolution. Merriam-Webster

(2000) defines evolution as:

• A process of continuous change from a lower, simpler, or worse to a higher,

more complex, or better state.

• The historical development of a biological group (as a race or species).

Adaptation encompasses both evolution, on a population or macro scale, and

learning, on an individual or micro scale. When an individual organism adapts to its

environment, it is generally considered learning. When a species adapts to its

environment, it is considered evolutionary change. Adaptation implies a modification

according to changing circumstances (Merriam-Webster, 2000). The following

definitions apply:

• Adjustment to environmental conditions.

14

• Modification of an organism or its parts that makes it more fit for existence

under the conditions of its environment.

The following definition for adaptation will be used for this thesis:

Definition 6. Adaptation

C. ABBREVIATED HISTORY OF MULTI-AGENT SYSTEMS

Agent-based computing and MAS techniques are relatively young fields that have

only been in use for about a decade. Many look at John Holland’s work modeling

complex adaptive systems (CAS) as the defining research for the beginning of the

fascinating new fields of artificial life (A-Life) and agent-based computing. Holland was

one of the founding members of the “BACH” group at the University of Michigan

(named after the original members---Arthur Burks, Robert Axelrod, Michael Cohen and

John Holland), a small group of researchers from a variety disciplines who shared an

interest in complex adaptive systems of all kinds (Festschrift, 1999). The following

paragraph about Holland and his work serve as an introduction into the history of this

field.

1. Holland

Receiving a Ph.D. in Communication Sciences from the University of Michigan

in 1959, John Holland became interested in combining concepts from psychology,

specifically cognitive science, with mathematics and computer science. While the

Adaptation: The process of modifying ones behavior over time to
advantageously form a better fit to the environment.

15

mainstream AI community was focused on neural nets, symbolic AI, and expert systems,

Holland concentrated on methods related to machine learning. At the time, there were no

mathematical theories associated with learning, but there were mathematics associated

with adaptation (Fisher, 1958). Holland proposed that learning and adaptation were very

much the same, distinguished mostly by the time scale, as discussed in section B above.

He developed genetic algorithms (GA) in the 1960’s and used them to help model CAS.

Holland’s subsequent work led him to the development of classifier systems: rule based

models in which genetic algorithms can be applied to change rules. (Stites, 1997)

2. Foundations of MAS

The multi-agent approach lies at the crossroads of several
disciplines. The two most important ones are distributed
artificial intelligence (DAI), the purpose of which is to
create organizations of systems capable of solving
problems by means of reasoning most generally based on
the manipulation of symbols; and artificial life (A-Life),
which seeks to understand and model systems possessing
life, that is, capable of surviving, adapting and reproducing
in sometimes hostile surroundings. – JACQUES FERBER

In keeping with the above statement by Ferber (1999), the following sections

briefly describe DAI and A-Life, two of the most influential disciplines on MAS research

and development today. As a historical tool, these paragraphs focus on the key

researchers in each area. A summary of key MAS simulations is then presented.

16

a. Distributed Artificial Intelligence (DAI)

DAI began to emerge in the late 1960’s and early 1970’s as a new branch

of study for AI researchers. Carl Hewitt’s concurrent actor model and his work on open

systems is probably the most recognized work associated with the birth of DAI (Hewitt,

1977). A concurrent actor can be described as an object that carries out its actions in

response to the communications it receives and its current behavior. The similarities to

this description and the current concept of agency is so close that more than a decade

after publishing his paper on concurrent actors, he described DAI as beginning with

“attempts to apply and extend the study of ‘Intelligent Agents’ to cover activities that are

distributed in space and time” (Hewitt and Inmann, 1991). Victor Lesser is also widely

associated with foundational work in DAI with his work in the early 1970’s on the

blackboard system and the first Distributed Vehicle Monitoring Test (DVMT). Lesser

concentrated on communication, cooperation, and negotiation among multiple agents

(Ferber, 1999). Les Gasser’s Mace system is also largely associated with pioneering

work in DAI in the late 1980’s. When attempting to define DAI, one runs into the same

problems of a distinct lack of a consensus definition. Gasser states that “(DAI) is a sub-

field of AI concerned with the problems of describing and constructing multiple

‘intelligent’ systems which interact” (Gasser et al., 1987). Russell and Norvig (1995)

state that when using the rationalist approach, AI can be viewed as “the study and

construction of rational agents.” Extending this to include the distributed sense, DAI

might well be defined as ‘the study and construction of distributed rational agents.’

17

Weiss (1999) makes no distinction between the terms MAS and DAI system, and uses

them synonymously. He defines DAI as, “…the study, construction, and application of

multiagent systems….”

b. Artificial Life (A-Life)

John von Neumann’s work in cellular automata, and Norbert Wiener’s

formulation of cybernetics, both in the late 1940’s and 1950’s have often been cited as

foundational work for A-Life and MAS (Ferber, 1999). In his introduction to Von

Neumann’s work (Von Neumann, 1966), Arthur Burks, the inventor of the first multi-

purpose electronic computer ENIAC, writes, “(Von Neumann’s) ‘theory of automata’

formed a coherent body of concepts and principles concerning the structure and

organization of both natural and artificial systems, the role of language and information

in such systems, and the programming and control of such systems”.

Chris Langton, a student of John Holland, invented the term artificial life,

or A-Life in the late 1980’s while conducting research at the Santa Fe Institute (SFI), and

is the person most associated with this field. A-Life is concerned with “abstracting the

underlying principles of the organization of living things and implementing them in a

computer so as to be able to study and test them” (Langton, et al., 1990). In the early

1990’s, Langton began working with a team of researchers at the Santa Fe Institute (SFI)

on the development of Swarm, a multi-agent software platform designed to simulate

CAS. Swarm leveraged the power of MAS by employing a collection of independent

agents interacting via discrete events. The Swarm toolkit was written with no domain

18

specific requirements and as such, simulations have been written using Swarm for

everything from ecosystems to economics, from physics and chemistry to political

science (Minar et al., 1996). More information on Swarm is available in C.3 below as

well as Appendix A.

Craig Reynolds is also a popularly recognized name in the field of A-Life,

due in large part for his work with “boids.” Boids are artificial birds that exhibit

behaviors much like that seen in a flock of birds in nature. This behavior is generated by

the incorporation of three simple rules in each agent (Reynolds, 1999):

• Separation: steer to avoid crowding local flockmates.

• Alignment: steer towards the average heading of local flockmates.

• Cohesion: steer to move toward the average position of local flockmates.

Reynolds calls his work, “Individual-based models,” which are simulations based on the

global consequences of local interactions of members of a population (Reynolds, 1999).

His work involving modeling natural aggregate behavior such as schools, flocks and

herds, including (Reynolds, 1982) and (Reynolds, 1987), earned him the Scientific and

Engineering Award in 1997 from the Academy of Motion Picture Arts and Sciences

(Academy, 1997).

3. Significant MAS Simulations

In the course of development of the MAS research field, certain key MAS

simulations have been influential to students and researchers alike. The following

simulation architectures are some of the most well know and referenced works by

19

academia, defense, and commercial research organizations. See Appendix A for a more

complete list of existing MAS simulation architectures.

a. MACE

I think many people talk about agents without clearly
specifying what may differentiate agents from other kinds
of programmed entities. So pretty often the discussion
about agents focuses on things that don’t seem to be a great
deal different from distributed objects…. I think a more
direct way to see the prospects for a concept like ‘agents’ is
to go back to the history of programming and locate the
concept of agent in a historical progression of
programming—a progression of techniques for description
and action. And once we do that, maybe we can see what
may be the contribution of agents, as a part of an evolution
of programming languages and programming technologies.

- LES GASSER

Gassers comments above (Briot, 1998) provide a reasonable justification

for exploring his work in this section. Les Gasser developed MACE (Multi-Agent

Computing Environment), a language, programming environment, and test-bed for DAI

systems, in the late 1980’s. The goal of MACE was to “support experimentation with

different styles of distributed AI systems, at different levels of complexity” (Gasser, et

al., 1987). Widely cited and known worldwide as a "classic" DAI system, MACE

introduced several concepts now used in virtually all experimental platforms in the field,

including social-level reasoning, model composition, and role-based coordination

(Gasser, 2000). MACE consisted of a collection of components including the following

types: agents, system agents, facilities, a description database, and kernels. For more

details on MACE, see (Gasser, et al., 1987).

20

b. Echo

Echo is a simulated world, somewhat like SimCity, but not
nearly as concrete. It’s a world in that there’s a geography
with different resources at different places… The resources
are merely letters: resource A and B. One place has a lot of
A, and another a lot of B. Now, I have these ‘agents’ in
Echo—you could think of them as simple organisms—that
move around. They have limited capabilities. In early
models two agents could come together and decide to trade
some resources. They carry a reservoir, a stomach, that can
carry resources. One agent might have plenty of A but
need B, and another might have a lot of B and need A.
They’d meet and trade. - JOHN HOLLAND

The above quote was taken from an interview with John Holland about the

origins of A-Life (Stites, 1997). Echo is a simulation tool “developed to investigate

mechanisms which regulate diversity and information-processing in systems comprised

of many interacting adaptive agents, or CAS” (Echo, 2000). Interactions between agents

in Echo include combat, trade and mating. Echo agents develop strategies to ensure

survival in resource-limited environments. Rules for interactions are encoded in

individual genotypes. In a typical simulation, populations of these genomes evolve

interaction networks, which regulate the flow of resources. Resulting networks resemble

species communities in ecological systems. Flexibly defined parameters and initial

conditions enable researchers to conduct a range of "what-if" experiments. For further

information on Echo, the reader is directed to (Holland, 1995) and (Echo, 2000).

21

c. Swarm

Many biologists have speculated wistfully about
“rewinding the tape” of evolution, starting the process over
again from slightly different initial conditions. What would
emerge? What would be the same? What would be
different? We sense that the evolutionary trajectory that
did in fact occur on earth is just one out of a vast ensemble
of possible trajectories—each leading to a biology that
could have happened in principle, but didn’t in fact solely
for reasons of accident combined with common genetic
descent. We sense that the regularities we seek would be
revealed to us if we could just get a glimpse of that space of
possible biologies. - CHRIS LANGTON

The quote above, taken from the editor’s introduction to (Langton, 1997),

illustrates the power of MAS as applied to the study of A-Life. Chris Langton, and

fellow researchers at the Santa Fe Institute, developed Swarm in the mid 1990’s, with a

beta release in 1996. Swarm is a software package for multi-agent simulation of complex

systems and is intended to be a useful tool for researchers in a variety of disciplines. The

basic architecture of Swarm is the simulation of collections of concurrently interacting

agents. Swarm supports both discrete event and time stepped models as well as a variety

of generic methods for tapping data from components of the system, combining those

data through statistical filters, and displaying then with generic visualization objects or

saving them to files. Swarm was initially developed in the Unix operating environment

and programmed in objective C. Recently, Swarm has been ported to a variety of

operating systems and programming languages. For more information on Swarm, see

(Swarm, 2000).

22

d. SimCity

With SimCity we weren’t trying to make a realistic
simulation of a city; we were trying to do a caricature. We
exaggerated a lot of things to bring them to the forefront so
you notice the relationships between different factors.

- WILL WRIGHT

This introductory quote was from an interview with Wright on

Gamecenter.com (1999). Will Wright began working on an idea he had for a ‘City

Simulator’ in 1985. His idea was to create a first-of-its-kind game that would allow the

user to create and control a city as a system. He co-founded Maxis with Jeff Braun in

1987 and released SimCity™ in 1989 (IBM, 1997). This new game was unlike any other

computer game on the market, using amazing new technology that let the user take

control of a big area of land and attempt to build a thriving metropolis. Although the

exact technology is still kept closely guarded, it is speculated that some form of cellular

automata and/or agent-based simulation is at the heart of the game (Hiles, 1999). The

citizens of these simulated cities are called sims, and are often believed to be agent-

driven. The tiles that represent land and structures are also very “agent-like.” This

simulation is included in this section for two important reasons. It is probably the most

well know simulation of this kind by researchers and non-researchers alike. SimCity and

the numerous follow-on games of this type (SimEarth, SimLife, SimAnt, etc) influenced

23

the research direction of a number of simulation efforts. For more information on all of

the Maxis “Sim”-line of games, see (Maxis, 1999) and (Maxis, 2000).

e. ISAAC

Perhaps the single most important lesson of the new
sciences is the observation that the collective decentralized
interaction among individual agents obeying local rules
often appears locally disordered but induces – on a higher
level – a globally ordered pattern of behavior. The central
thesis of this report…is that the general mechanisms
responsible for emerging patterns in complex adaptive
systems can be used to further our insight into the patterns
of behavior that arise on the real combat battlefield. That
is, that land combat can be modeled as a complex adaptive
system. - ANDREW ILACHINSKI

As the above quote (Ilachinski, 1997) indicates, ISAAC (Irreducible Semi-

Autonomous Adaptive Combat) was one of the first military research projects to openly

attempt to model land combat using agent-based simulation techniques. Completed in

1997, Ilachinski’s model represented combatants as red or blue squares on a two-

dimensional field of battle. Each agent, or ISAACA, moved based on its current status of

alive or injured, and on it’s propensities to move towards the following objectives: alive

friendly, alive enemy, injured friendly, injured enemy, own flag, or enemy flag. The goal

of ISAAC was to take a bottom-up, synthesist approach to the modeling of combat, vice

the more traditional top-down, or reductionist view. ISAAC represented a first step

toward developing a “complex systems theoretic analyst's toolbox (or "conceptual

playground") for exploring high-level emergent collective patterns of behaviors arising

24

from various low-level (i.e., individual combatant and squad-level) interaction rules.” For

more information on ISAAC and the follow-on project, EINSTein, see (ISAAC, 2000).

D. SUITABILITY OF MULTI-AGENT SYSTEM SIMULATIONS

According to Ferber (1999), MAS simulations are one of the five main

applications of MAS. Other applications include: problem solving; building artificial

worlds; collective robotics; and program design. MAS simulations use a bottom-up

approach to modeling complex, ill-defined situations. That is to say, they leverage the

emergent behavior of a collection of individually acting agents to allow the discovery and

exploration of the possible, underlying, base rules that exist. Axelrod describes agent-

based modeling as an inductive analysis tool that aids intuition and enriches ones

“understanding of fundamental processes that may appear in a variety of applications”

(Axelrod, 1997). John Holland’s classifier systems are used to “get a better handle on

cognition” (Stites, 1997). By treating the rules that they are based on as hypotheses, and

allowing the exploration of new combinatory rules thru GA, one can explore alternate

rule-bases that generate similar (or different) emergent behavior. This is extremely

useful when trying to gain an understanding of the potential reasons of observed behavior

of a CAS. In terms of A-Life, MAS simulations can be used to study how computational

techniques can model biological phenomena, as well as how biological techniques can

help shed new methods of solving computational problems (Liekens, 2000).

25

E. SURVEY OF SIMILAR MAS SIMULATION ARCHITECTURES

The following MAS simulation architectures, packages and toolkits were

surveyed for a comparison to the RELATE design goals. They are all Java-based and

freely available for download. Most of the information provided here was summarized or

excerpted from the various package websites as indicated. For a more complete survey

of these and other existing architectures and libraries, see Appendix A.

1. OAA

Adam Cheyer, David Martin, and colleagues, developed the Open Agent

ArchitectureTM (OAA®) at SRI International in the mid 1990’s. They focused on building

distributed communities of agents, where they defined an agent as “any software process

that meets the conventions of the OAA society.” An agent satisfies this requirement by

registering the services it can provide by utilizing an “Interagent Communication

Language” (ICL), and by sharing functionality common to all OAA agents, such as the

ability to install triggers, manage data in certain ways, etc. OAA exhibits the following

characteristics, taken directly from the OAA web site, to achieve it’s objective of

providing a framework for integrating a community of heterogeneous software agents in

a distributed environment (SRI, 2000):

• Open: agents can be created in multiple programming languages and interface

with existing legacy systems.

• Extensible: agents can be added or replaced individually at runtime.

• Distributed: agents can be spread across any network-enabled computers.

26

• Parallel: agents can cooperate or compete on tasks in parallel.

• Mobile: lightweight user interfaces can run on handheld PDA's or in a web

browser using Java or HTML and most applications can be run through a

telephone-only interface.

• Multimodal: When communication with agents, handwriting, speech, pen

gestures and direct manipulation (GUIs) can be combined in a natural way.

OAA 1.0 agent libraries have been ported to a number of programming languages,

including Java.

2. JAFMAS

Developed by Deepika Chauhan at the University of Cincinnati in 1997, JAFMAS

provides a framework to guide the coherent development of MAS along with a set of

classes for agent deployment in Java. The JAFMAS methodology follows five stages:

agent identification, definition of each agent's conversations, determining the rules

governing each agent's conversations, analyzing the coherency between all the

conversations in the system, and implementation. Only four of the provided Java classes

must be extended for any application. (JAFMAS, 2000)

3. Zeus

Hyacinth Nwana and other members of British Telecom (BT) Laboratories’

Intelligent Systems Research (ISR) Group, under the Agents Research Programme,

developed the Zeus Agent Building Toolkit in the mid 1990’s. Zeus is an integrated

environment for the rapid development of collaborative agent applications. It is entirely

27

implemented in Java and will run on all major hardware platforms. The goal of Zeus

developers was to create a toolkit that would facilitate the rapid design, development and

deployment of agent systems. Zeus was designed by incorporating three main functional

components, as described in (Zeus, 2000):

• The Agent Component Library - A collection of software components that

implement the functionality necessary for multi-agent systems. This library

provides a set of high quality, pre-written and pre-tested agent components

that “liberate developers from the minutiae of agent technology, allowing

them to concentrate on solving their application's problems instead.”

• The Agent Building Tools – A number of editors designed to “guide

developers through the stages of the comprehensive agent development

methodology.” These editors include: ontology, agent definition, task

description, organization, and coordination editors.

• The Visualization Tools – These include the runtime environment that enables

applications to be observed and, where necessary, debugged. The tools collect

information on agent activity, interpret it and display various aspects in real-

time. The “Visualiser” consists of the following tools: society viewer, reports

tool, statistics tool, agent viewer, and a control tool.

4. JATLite

Created at Stanford University, JATLite (Java Agent Template, Lite), is a package

of programs written in Java that is designed to allow users to quickly create new software

28

agents that robustly communicate over the Internet. JATLite’s infrastructure registers

agents with an “Agent Message Router” facilitator. Registration is done using a name

and password, and allows agents to connect/disconnect from the Internet, send and

receive messages, transfer files, and invoke other programs or actions on the various

computers where they are running. JATLite agents send and receive messages using

KQML (Knowledge Query and Manipulation Language), a language and protocol for

exchanging information and knowledge that is being developed as part of the ARPA

Knowledge Sharing Effort (KQML, 2000). The communications are built on open

Internet standards. Developers using JATLite are able to build agent systems using other

agent languages as well. (JATLite, 2000)

5. DECAF Agent Framework

Developed at the University of Delaware by Keith Decker, John Graham, and a

team of graduate students, DECAF (Distributed, Environment-Centered Agent

Framework) is a toolkit that provides a stable platform to “design, rapidly develop, and

execute intelligent agents to achieve solutions in complex software systems.” DECAF is

conceptually thought of as an agent operating system that provides the following agent

services: communication, planning, scheduling, execution monitoring, coordination, and

eventually learning and self-diagnosis. The goals of the architecture are as follows

(DECAF, 2000):

• Develop a modular platform suitable for research activities.

• Allow for rapid development of third-party domain agents.

29

• Provide a means to quickly develop complete multi-agent solutions using

combinations of domain-specific agents and standard middle-agents.

• Take advantage of the object oriented-features of the JAVA programming

language.

F. MAS SIMULATIONS OF HUMAN AND ORGANIZATIONAL BEHAVIOR

In addition to Echo, Swarm and SimCity, discussed above, a number of other

MAS simulations have successfully captured key aspects of human and organizational

behavior. A few of the most significant simulations are summarized here with most

information provided from on-line resources as indicated.

1. Sugarscape

In 1996 Josh Epstein and Robert Axtell published “Growing Artificial Societies:

Social Science from the Bottom Up,” as part of the 2050 Project, a joint venture of the

Santa Fe Institute, the World Resources Institute, and the Brookings Institution (Axtell &

Epstein, 1996). They proposed a new model, Sugarscape, which simulates the behavior

of artificial people (agents) located on a landscape of a generalized resource (sugar). The

agents have vision, a metabolism, a speed, and other genetic attributes. They move

around the landscape, in the direction of the largest concentration of sugar visible to

them, and eat the sugar to replace energy consumed by motion. Agents die if and when

they burn up all their sugar. Epstein and Axtell conducted a variety of experiments on this

artificial society, including adding seasons, which caused the agents to hibernate, and a

30

second resource (spice) which allowed the agents to trade and compete for resources,

creating an emerging market. (Sugarscape, 2000)

2. Iterated Prisoner’s Dilemma

The two-person iterated Prisoner’s Dilemma is the E. coli
of the social science, allowing a very large variety of
studies to be undertaken in a common framework. It has
even become a standard paradigm for studying issues in
fields as diverse as evolutionary biology and networked
computer systems. Its very simplicity has allowed political
scientists, economists, sociologists, philosophers,
mathematicians, computer scientists, evolutionary
biologists, and many others to talk to each other. Indeed,
the analytic and empirical findings about the Prisoner’s
Dilemma from one field have often led to insights in other
fields. - ROBERT AXELROD

In 1984, Robert Axelrod developed a multi-agent simulation of the classic social

problem known widely as the Two-Person Prisoner’s Dilemma (Axelrod, 1984). The

Prisoner’s Dilemma is a situation that represents two people arrested for a crime. They

are put in separate interrogation rooms, led to believe that they will certainly be convicted

of the crime, but that they might receive a reduced sentence if they testify against the

other. If they do testify, the other accomplice will receive a much harsher sentence.

Each individual can either cooperate, by not implicating the accomplice, or defect, by

providing testimony against the partner. If these same individuals meet a number of

times in the same situation, one might be able to recognize a pattern of behavior of the

other and take advantage of it. In this manner, the strategic situation becomes the

Iterated Prisoner’s Dilemma. Axelrod demonstrated through a series of experiments and

31

tournaments that an agent-based evolutionary simulation could effectively model human

decision-making. Follow-on work described in (Axelrod, 1997) continued to delve into

organizational behavior and the issue of social norms.

3. Unscrupulous Diner’s Dilemma

This lighthearted situation, which we call the Unscrupulous
Diner’s Dilemma, typifies a class of serious, difficult
problems that pervade society. Sociologists, economists
and political scientists find that this class of social dilemma
is central to a wide range of issues, such as protecting the
environment, conserving natural resources, eliciting
donations to charity, slowing military arms races and
containing the population explosion. All these issues
involve goals that demand collective effort and
cooperation. The challenge is to induce individuals to
contribute to common causes when selfish actions would be
more immediately and personally beneficial.

- NATALIE GLANCE & BERNARDO HUBERMAN

Glance and Huberman (1994) expanded work on the Prisoners Dilemma by

looking at the complex interactions that might take place when a group of people meet

regularly to dine at a fine restaurant. As often happens, there is an unspoken agreement

to divide the check evenly. Some people will reasonably choose an average cost meal,

while others may take advantage of the situation by picking a more expensive meal.

Glance and Huberman call this the “Unscrupulous Diner’s Dilemma.” Where Axelrod’s

work focused on individual decision-making, Glance and Huberman focused on social

and organizational behavior, and in particular, the impact of relationships in that

organizational structure or hierarchy. They also demonstrated that even the complex

32

interactions and behaviors represented in this situation could be effectively modeled with

MAS.

4. TheSims

Like our everyday world, the world of the Sims requires
judgment and decision-making, in affairs from the trivial to
the life threatening. Just as we learn to adapt to the full
scope of our world’s challenges, so must you guide your
Sims, from their breakfast selection to their career track.
And as you’ll see, they do some decision-making on their
own, and sometimes you might want to pull your hair out
from watching what they come up with.

THESIMS USER MANUAL

As early as 1994, Will Wright began working on a new project that he referred to

as “Dollhouse” (Wired, 1994). He envisioned being able to zoom down into SimCity, all

the way down to street level, to see the people interacting with each other by talking and

gesturing (Hopkins, 2000). In late 1999, Maxis released TheSims, which allows the

user to “create and control people” in the simulation (Maxis, 2000). TheSims allows

you to create characters and balance the following personality traits: neat, outgoing,

active, playful, and nice. As the individual character goes on about the life you generate

for it, various changing needs are displayed: hunger, comfort, hygiene, bladder, energy,

fun, social, and room. Wright successfully incorporated shifting goals and changing

moods, creating a very convincing, and entertaining representation of human behavior.

33

G. SUMMARY

This chapter highlighted several key definitions and concepts as they are used in

this thesis. Many of these terms are not rigorously defined in the research community,

but a common understanding, or at least temporary acceptance, is important, nonetheless.

An abbreviated history of MAS was given to establish a common reference point. The

work of John Holland and other significant researchers was emphasized, and the

connections of MAS research to DAI and A-Life was established. A review of

significant MAS simulations was also included. A short discussion was provided on the

suitability of MAS simulations and solutions, concluding that, as Robert Axelrod states,

they are best suited for doing “thought experiments.” A survey of MAS simulation

architectures similar to RELATE was provided. In general, each of these architectures

were shown to focus more on mobile agents and communication methods than on MAS

simulations. The chapter concluded with examples of MAS simulations that effectively

modeled some form of human decision-making and/or organizational behavior.

The next chapter presents RELATE, a relation-centric MAS design paradigm and

associated Java library of classes that is tailored to assist developers create rich,

hierarchical simulations that realistically represent human decision-making and

organizational behavior.

34

THIS PAGE INTENTIONALLY LEFT BLANK

35

III. RELATE DESIGN PARADIGM AND ARCHITECTURE

The man who is striving to solve a problem defined by
existing knowledge and technique is not just looking
around. He knows what he wants to achieve, and he designs
his instruments and directs his thoughts accordingly.... To
be accepted as a paradigm, a theory must seem better than
its competitors, but it need not, and in fact never does,
explain all the facts with which it can be confronted.

- THOMAS KUHN (1962)

A. INTRODUCTION

This chapter presents RELATE, a relation-centric design paradigm for building

MAS simulations. RELATE helps the simulation developer capture the complex

interdependencies of human decision-making and organizational behavior. The name

itself is actually a mnemonic device that reminds the developer to focus on relationships,

as well as other key aspects of MAS. RELATE stands for relationships, environment,

laws, agents, things, and effectors. This design is based largely on Ferber’s definition of

a MAS (Ferber, 1999). Modifications have been made to allow the use of the mnemonic

and to shift the focus on relationships. Section B presents the details of the design

paradigm and describes the importance of each of the key areas represented by the

mnemonic title. Section C provides an simple analogy as a means to more easily

understand the important concepts of RELATE, as well as how the design paradigm is

implemented. Section D demonstrates a recommended technique to design MAS

simulations using RELATE. Section E presents a brief description of each of the classes

and interfaces in the Java implementation of the design paradigm.

36

B. RELATE DESIGN PARADIGM

The RELATE design paradigm proposes that an effective way to model the

complex, human decision-making process. It focuses on how an individual relates to

other things and individuals within its environment. By concentrating on the

relationships of individuals and within organizations, the developer is encouraged to

identify the various roles that are assumed by members belonging to each relationship.

These roles usually have certain responsibilities and commitments, which tend to be

manifested as additional goals that must be addressed by the various members of the

relationship. Goals can often be categorized into different types, with each type of goal

requiring action that is independent of all other types. For instance, a goal to move to a

certain point (movement goal type) can be accomplished independently from a goal to

shoot at all hostile forces that are detected (shooting goal type), or to keep members of a

unit informed (communication goal type). These are examples of the three distinct goal

types that are used in the second reference case detailed in Chapter V. Once an agent is a

member of a relationship, it must base its action selection on its personality, or its

particular concern for each goal, the state of achievement of each goal, and, possibly, it’s

understanding of its superior’s desire to fulfill the goal. This often leads to conflicting

courses of action that the agent must resolve. If the goals are typed to match different,

non-conflicting action types, such as moving and communicating, they can be selected

with unique, independent mechanisms. Figure 1 shows an example of how these

different goals and their associated goal types might be represented. Goals that are being

37

satisfied might not need much attention and are green. Goals that are being neglected or

for some reason are not being satisfied may need more attention and are red.

Figure 1. Goal Satisfaction Representation

Each agent must determine which goal is the active goal in each set of goal types

in its goal list. Goal satisfaction is determined by evaluation of the sensed environment,

taking into account the agent's personality, and possibly the direction or guidance from

another agent in a common relationship, such as orders from a superior. If a particular

goal an agent has is far from being satisfied, but is not very important based on the

agent’s personality, the goal may not be significant enough to become the active goal. A

superior agent that cares about this same goal may exert influence on the subordinate

agent, raising the goal’s importance level. Based on the agents’ personality trait to follow

orders, it may shift an otherwise insignificant goal to a much higher importance level.

Goal achievement is measured by some mechanism that provides feedback to the

38

individual through its sensed environment. As one goal is fulfilled, other goals may

suffer. At some point, the attainment, or lack thereof, of certain goals may reach a

threshold that requires the agent to shift its current active goal to avoid an undesirable

state. This dynamic goal selection is one of the most significant features of the RELATE

design. It allows the agent to selectively choose different goals to adapt to changing

environmental factors. The following sub-sections highlight the key concepts of the

RELATE design paradigm.

1. Relationships

To paraphrase the definition provided in Chapter II, relationships are “the

assembly of relations... between mutually interested parties that link certain individuals to

others.” In the RELATE paradigm, these are the relations connecting or binding agents to

each other that result in the assignment of new roles, goals, and responsibilities.

Relationships are often formed to achieve something that is not achievable by any one

individual. Shared resources and abilities often allow the individual agent to satisfy a

goal it would otherwise not be able to achieve. These new abilities are usually attained at

the cost of additional commitments and responsibilities incurred by the relationship.

Often a common goal is established upon formation of a relationship that was not

previously held by any one individual agent. Relationships sometimes give member-

agents new capabilities, such as the ability to create an offspring, or the ability to

complete a coordinated task such as lifting an object too heavy for one person to lift. If

39

there is an overall benefit to the individual, there usually exists a desire to form the

relationship.

In the RELATE design, an agent always attempts to fulfill any relationship that it

can. To do this, it first needs to be aware that it is capable of forming a certain

relationship. The agent then needs to sense the appropriate agents and/or things

necessary to form the relationship. In the RELATE Java package, this is all handled

automatically by the relationship manager, a unique, static, “singleton” agent that is

responsible for verifying that prerequisites are met prior to instantiating each relationship.

Once the relationship is instantiated, the relationship manager assigns the members and

“releases” the relationship. The relationship is an independent agent that issues roles to

each member, constantly monitors it’s members, and ensures minimum conditions are

maintained to continue the relationship. Each role contains specific goals and rules.

Since an agent can belong to more than one relationship, it can also have multiple roles.

Each of these roles may have one or more goals, possibly of the same type. Goals of the

same type compete for the attention of the agent. Since they require the same type of

action to satisfy them, only one goal can be the active goal at any given time. The active

goal is determined by a number of factors including the personality of the agent, the

feedback from the environment on the state of achieving each goal, and any outside

influences that may encourage one goal be given a higher priority than another. These

goals are achieved by utilizing one of the rules, associated with the specific goal, to select

an appropriate action. If more that one rule is provided to accomplish the same goal,

some form of credit assignment is used to indicate which rules are more successful than

40

others. In this manner, genetic algorithms can be used to improve the agents rule set over

time.

The relationship monitors its members and the environment to ensure conditions

are maintained to continue the relationship. If there are “openings” for additional

members, and a new agent seeks to join the relationship, the available role is issued and

the new agent is accepted. If conditions are not maintained, the relationship withdraws

all of its assigned roles, disbands the relationship and destroys itself.

2. Environment

The environment of a MAS simulation is the situated or non-situated space in

which all things, including agents, exist. Rather than thinking of the environment as

landscape or terrain, think of it as the collection of things and agents that interact with

each other. Environments are very specific to the application and must be defined by the

developer. In the three reference cases provided in Chapters IV, V, and VI, the

environments include the un-situated collection of club members and a bar, a situated

two-dimensional battle field containing two armies, and a three-dimensional, networked,

virtual environment.

3. Laws

The limitations and restrictions in the specified environment placed on the things

in the environment. Ferber refers to laws as the “reaction of the world to (attempts) at

modification” (1999). Laws are not necessarily specified as a concise set of rules that

must be complied with. More often, laws are intertwined into the simulation. Specific

41

examples might include issues related to physically based modeling such as collision

detection, gravity and light propagation. Other examples might have to do with the ways

relationships are formed and destroyed. Laws are probably the most intangible aspect of

MAS simulations.

4. Agents

As defined in Chapter II above, an agent is “a software object that perceives its

environment through sensors and acts upon that environment through effectors to achieve

one or more goals.” In a RELATE simulation, agents are things that can take action, on

themselves and other things in their environment, to satisfy internal goals based upon

their perceived environment. Clearly, a MAS must contain more than one agent. The

true power of MAS simulations is derived from the interaction between agents, often

while achieving common goals.

5. Things

These are the base-level objects in the environment. All agents in the

environment are also objects, or things. Things have the ability to represent themselves,

either two-dimensionally (2-D) or three-dimensionally (3-D), or simply as text strings.

Things also have the ability to update themselves over time. A thing can be influenced or

modified by other things, including agents, in the environment. Examples of things that

aren’t agents include static objects such as rocks, bridges, and mountains, and dynamic

objects such as rivers, machines (like a revolving door or an ATM), and even a

complicated vehicle, assuming that an agent is required to operate it.

42

6. Effectors

These are the means by which an agent causes effects (interacts) in its

environment. Effectors include sensors and operators. One can think of effectors as the

Input/Output (I/O) methods for an agent. When designing agents for MAS, the developer

needs to consider what sensing abilities they should be capable of, as well as what

operators or actions they can employ. These effectors can be specifically type-matched

to the goal/rule pairs for ease of implementation.

C. BALLOON ANALOGY

When a new methodology or tool is presented, it is of little use if few people

completely understand it. As a training tool, the RELATE design paradigm and

associated Java classes might best be understood by considering the following simplistic

analogy:

1. Strings

Figure 2. Strings (Potential Relationships Names)

Agents in a RELATE simulation can be thought of as holding a number of balloon

strings, waiting for the right balloons to show up (Figure 2). The strings are the names of

potential relationships that the agent is capable of joining or forming.

43

2. Balloons

Figure 3. Balloons (Relationships)

The balloons are the actual relationships (Figure 3). An agent is constantly

looking around, trying to find an existing balloon to tie its string to, or asking if a balloon

can be created for it. The agent does this by passing its sensed environment to the

relationship manager and asking if it can join an existing relationship or form a new one

of its known potential relationships. Once a relationship is formed, the balloon passes

information down the string to the agent. In particular, the relationship issues roles and

provides a means for members of the relationship to communicate with each other. The

balloons, or relationships, are actual agents themselves. Once they are instantiated by the

relationship manager, they issue roles to each of the members of the relationship and

constantly monitor the conditions to maintain the relationship. If conditions are not

maintained, they remove all of the associated roles from the members and destroy

themselves, leaving the agent’s strings empty again.

44

3. Finding a Balloon

Figure 4. Finding a Balloon (Joining an Existing Relationship)

The easiest way to get a balloon is to find one that is already available, then just

attach a string. If an agent is looking for a relationship for one of it’s strings, or known

potential relationships, it will first try to join existing relationships (Figure 4). To

accomplish this, before the relationship manager creates a new relationship, it looks at the

agent’s sensed environment to see if the agent can detect other agents that are already in

the same relationship, and that have room for another agent. If the relationship has room,

the searching agent is added. If not, the relationship manager continues to look for non-

full relationships.

4. Buying a Balloon

The relationship manager is an agent too, but one that exists at the heart of the

RELATE simulation. The relationship manager is responsible for keeping track of all the

agents trying to form relationships. It is like the clown at a carnival, overseeing the

crowd, selling and blowing up the balloons, and tying the strings to the requesting agents.

45

Figure 5. Buying a Balloon (Relationship Manager)

These balloons don’t exist until the relationship manager verifies the prerequisites

are met to form them by using the balloons, or relationships, themselves to determine the

pre-requisites. Once all of the required conditions are met, the relationship manager

blows up the balloons, or instantiates the relationships, and associates them with the

designated agents (Figure 5).

5. Balloons That Pull

An agent may belong to a number of different relationships, each assigning

various roles and their associated goals. Sometimes the different roles compliment each

other and the agent finds that it can accomplish all of its goals without conflict. If the

goals are slightly different, or worse, contradict each other, it could cause the agent to be

“pulled” in different directions as it tries to satisfy all of its responsibilities. The agent

must then prioritize its goals based on its personality, the current state of achievement

46

Figure 6. Balloons That Pull (Conflicting Goals)

of its goals, and often, outside influences encouraging the pursuit of one goal over

another, such as orders or direction from a superior (Figure 6).

6. Life With Lots Of Balloons

A RELATE agent is created with a list of known potential relationships. Until all

of these relationships are fulfilled, the agent will continue to attempt to join or form these

relationships (Figure 7). It’s like the agent is running around, carrying a bunch of strings,

Figure 7. Life With Lots Of Balloons (Multiple Relationships)

47

some with balloons, and others just hanging down. The agent is constantly looking for

the right kind of balloons to tie to its empty strings. The end result is a self-organizing

collection of agents that automatically form organizations from the bottom up. Each

relationship adds additional roles and associated goals, some cooperating, some

conflicting. At the micro, or individual level, each agent has a very realistic, dynamic set

of goals that it is trying to achieve. At the macro level, a fully formed organizational

structure and aggregate behavior emerges, providing complex and often unpredictable

results, similar to real life.

D. A RECIPE FOR MAS SIMULATIONS USING RELATE

As a concrete example of a MAS simulation using the RELATE design paradigm,

consider a simulation that is attempting to model small scale, company strength battles on

a simplified battlefield. Using RELATE, the following design method, or “recipe” could

be used.

1. Define All Possible Relationships

In this simulation, two small groups of soldiers will be created. Each group of

soldiers will come from a different army, so the army relationship will be needed, with to

instances, redArmy and blueArmy. The largest organization displayed on the simulation

will be a company of soldiers, so the company relationship is needed. There is no need to

distinguish between red and blue company, because, as will be seen below, each

company will only consist of soldiers from the same army. Smaller divisions might be

appropriate, such as platoon and squad relationships. At the very lowest level, there may

48

be a need to include a buddy relationship. Prerequisites and maintaining conditions must

be established for each of these relationships. These can include attributes such as

minimum and maximum number of members, distance between members, various

capabilities of members, etc.

Figure 8. Example Relationship Hierarchy and Role Assignment

2. Identify Roles For Each Relationship

Each of the relationships identified above must have specific roles identified

(Figure 8). Members of an army can be assigned the role of soldier. If desired, one

could define a general or global commander of the army, but for this example, that is not

49

necessary. The company relationship should have a leader, or company commander and

members. At this point, a decision regarding complexity must be made. Individual

membership of the company relationship could be assigned to all soldiers under the

ultimate leadership of the company commander, or company members may be restricted

to leaders of subordinate units, such as platoon leaders and squad leaders. For this

example, the platoon leader will be the company member reporting directly to the

company commander, and the squad leader will be the platoon member reporting directly

to the platoon leader. Finally, individual army soldiers will be the members of the squad

relationship. Within the squad, two members may form the buddy relationship, with

possible roles of experienced and novice.

3. Determine Goal/Rule/Action Types

Once these relationships and roles have been determined, the developer must

consider the goals associated with each role. Goals are what motivates a RELATE agent

to take action. Goals should be divided into types, corresponding with the type of action

that will be required to accomplish each goal. In section D.5 below, rules will have to be

identified that will allow an agent to select an action to accomplish each goal. In effect,

the developer doesn’t just define the goals first, and then the rules. Instead, the developer

should be thinking of goal/rule pairs, the combination of which selects and action. A

diagram detailing how goal/rule pairs fit into the action-decision loop is shown in Figure

9, at the top of the next page.

50

Figure 9. Action-Decision Loop

4. Determine Goals For Each Role

Keeping the concept of goal/rule pair in mind, the developer must identify all

goals associated with each role in the simulation. An individual soldier’s goals may

include maximizing enemy casualties and minimize personal injury. If the simulation was

more concerned about logistics than combat, other goals might include sustenance goals

such as remain hydrated and eat twice a day. A leader’s goals may differ, depending on

his level in the chain of command. For Squad Leaders, they might include unit goals

such as scout or reposition artillery, and maintain unit cohesion. A leaders goals may

also include more individualize goals such as following orders and keep leader informed.

Platoon Leaders may have more global objectives such as protect right or left flank of

company and minimize unit attrition. The Company Commander exercises even more

51

global goals to achieve the overall objective. Examples may include hold the hill, open

the line, or capture the flag.

5. Determine Rules For Each Goal

Rules are usually formulated during the goal-development process. This is

because each goal must be specific enough to allow a rule, or set of rules, to achieve the

goal algorithmically. A rule can be as simple as a mathematical equation, or as complex

as another sub-agent operating on the perceived environment passed to it. Because of the

diversity of rules, and the obvious requirement that they be tailored to the specific

simulation, the Rule interface is little more than a place holder for a generic calculate()

method that receives a sensedEnvironment object and returns a Java Object. The

developer must cast the returned Java Object to the appropriate instance, such as Action,

Integer, Float, etc.

Example rules for the members of the sample simulation could include random

movement rules, gradient-type rules, or go-to-here rules. These are all examples of

potential movement-type rules. Shooting-type rules could include shoot at all sensed

enemy, shoot at closest enemy, shoot at enemy only when they are within a certain range,

and don’t shoot at enemy of a certain type. Communication rules may include send all

data every turn, send partial data every turn, send data only every fifth turn, etc.

During this development phase of the structure of the simulation, it is more

important to focus on the basic idea of the rule, vice defining the actual pseudo code or

algorithm. A descriptive name should be used in this recipe for now.

52

6. Determine Feedback Mechanism For Each Goal

After an agent executes its action-decision loop, the results of its action have

some effect on itself and/or the environment. Before the next action is decided, the agent

must have some method to evaluate the effectiveness of its actions on achieving its goals.

An action taken specifically to achieve a certain goal may improve the attainment of that

goal, but worsen the attainment of one or more other goals. The agent must evaluate not

just the active goal, but all goals attainment level, or health. It is therefore necessary that

the developer has defined a clear, concise measure of effectiveness for each goal.

An example feedback mechanism might be the difference between current and

past proximity to the enemies flag. Another example may be a comparison of past and

previous internal states such as energy level, health, hunger, injury, etc.

7. Determine Credit Assignment For Each Rule

If there is only one rule defined for each goal, there is no need for this step. If the

developer is interested in building intelligent agents, that adapt to improve over time,

then multiple rules for each goal should be provided. The performance of each rule

should be monitored by updating the weight of each rule with a credit assignment

mechanism. Going one step further, if multiple rules are designed that offer different

ways to accomplish the same goal, they can be used in different combinations. Genetic

Algorithms (GA) can then be used to explore various combinations of rule sets. See

Figure 10, on the next page, for a graphical representation of multiple rule sets, credit

assignment and active rule selection.

53

Figure 10. Multiple Rules per Goal

8. Implement Design By Satisfying RELATE Interfaces

At this point, the developer should have a concise, well-defined structure that can

be used as a guideline to create the simulation. Starting from the Rules and Goals, and

working up to the Roles and Relationships, the developer should construct specific Java

classes for the simulation by implementing the appropriate interface.

9. Use Reference Cases As A Starting Point For GUI Development

The Graphical User Interface (GUI) for each simulation will need to be tailored to

by the developer. Situated and non-situated environments, statistical output, and other

factors greatly influence these decisions. The three reference cases described in the

following chapters can be used as a starting point, or simply as a source for ideas.

54

E. RELATE JAVA CLASS AND INTERFACE DEFINITIONS

The following sub-sections provide a brief description of the classes and

interfaces of the RELATE Java package. A more complete description is available in

JavaDoc format provided in Appendix C. The actual source code itself is provided in

Appendix E. Both JavaDocs and source code are also included in the attached CD-ROM.

1. Public Class RelationshipManager

RelationshipManager is the heart of the RELATE simulation package.

RelationshipManager is an example of the singleton programming pattern. “Singleton”

means that there is one, and only one, instance of this class per application. This is

accomplished by the static, synchronized getRelationshipManager() method. This

method creates a new RelationshipManager upon the first request, or returns the existing,

unique RelationshipManager if it has already been created. The RelationshipManager is

the only complete Java class in RELATE. All other classes are either abstract or

interfaces. An abstract class contains one or more abstract methods that are required to

be defined by the developer. An interface has no data members and the developer must

define all methods.

The RelationshipManager handles the formation and administration of all

relationships by requiring agents to form relationships with the checkForRelationships()

method. This method is the most significant method in this class. It checks for every

possible relationship that can be formed between the requesting, passed in agent and

other agents in its sensedEnvironment. Since the requirements for formation of new

relationships are defined within the individual relationships, the RelationshipManager

55

instantiates the requested relationship using the createRelationship() method. This is

possible due to the no-argument constructor used in the Relationship interface. If

conditions are met, it adds the agent to this new Relationship. Otherwise, the relationship

is never utilized and it is cleaned up with the automatic garbage collection feature of

Java. Relationship administration is accomplished by maintaining a current list, or

vector, of active relationships, available through a getter method. The

RelationshipManager adds relationships to this vector, but they are removed by the

individual relationships. See the Relationship class below for more details on how

relationships interact with the RelationshipManager.

2. Public Abstract Class Thing Extends Object

This abstract class implements the RELATE Thing. This is the minimal entity that

can exist in a RELATE simulation. This class defines the minimum requirements for a

Thing in the RELATE architecture. A Thing has a unique entity identification number

and name with associated getter and setter methods. If the entity identification number

and name are not provided in the constructor, a no-argument constructor will assign the

number “0” and name “unnamed” to the Thing. The only other methods that a Thing has

are the step() and drawSelf() abstract methods. The step() method is used to update the

object and the drawSelf() method is used to update the appearance during the simulation

run. Both methods are unique to each simulation and therefore must be defined by the

developer.

56

3. Public Abstract Class Agent Extends Thing

This abstract class implements the RELATE Agent. Since all Agents are objects,

or things, Agent extends Thing, giving it the ability to update and draw itself. By the

definition provided in Chapter II, an agent “...perceives its environment through sensors

and acts upon that environment through effectors to achieve one or more goals.” To

satisfy these requirements, the developer must first establish a method for the agent to

gather information about the environment it exists in. This information is stored in the

sensedEnvironment data member. This class allows the developer to do this by defining

the abstract getSensedEnvironment() and setSensedEnvironment() methods to interact

with the simulation environment directly. These methods should utilize the sensorList

hashtable to define what each agent is capable of sensing, and only allow the agent to

sense the specific attributes of the environment that its current sensor list can detect or

discern.

Next, the agent must select an appropriate action. Two things are needed for this:

actions that can be selected, and a method or methods to select these actions. The actions

each agent can take are simulation-dependent and must be defined by the developer. For

simpler simulations, actions can be built into the Agent class itself. An Action interface

is provided as a tool for the developer designing more complex simulations. The

mechanism for selecting actions is based upon the relationships each agent forms, and the

associated roles and goals that the agent attempts to fulfill.

57

Agents have a relationship hashtable that the developer must fill with the class

names of all the potential relationships that the agent can form. This can be accomplished

by using the addRelationshipName() method.

4. Public Interface Relationship

Relationships are the life-blood of the RELATE architecture. One of the most

important aspects of a Java class that implements the Relationship interface is that it must

have a no-argument constructor. As described above, this allows the

RelationshipManager to create it dynamically to verify prerequisites and assign

members. Relationships have a conditionsMaintained() method that is used by the

RelationshipManager to verify prerequisites are met prior to creating the relationship.

Once created by the RelationshipManager, the Relationship objects are independent

agents that issue roles to each member agent using the issueRoles() method. They also

monitor conditions of, their members. They also destroy themselves if minimum

requirements for existence are not maintained using the method destroyRelationship().

When this happens, the relationship withdrawals all of its associated Role objects from

each member, then removes itself from the RelationshipManager’s active relationship

vector.

5. Public Interface Role

Defines the minimum requirements for a RELATE Role. A Role object brings

additional capabilities and responsibilities to a host Agent. This can include, but is not

58

limited to, sensors, goals (with their associated rules), and actions that enable it to act

upon itself and its environment.

6. Public Interface Goal

Defines the minimum requirements for a RELATE Goal. Provides a mechanism

to select from a collection of methods (rules) that affect an Agent's internal state or

external environment. These methods are selected based on the activeRule of a collection

of Rules. The method, or action, taken is intended to satisfy the Goal. A feedback

mechanism must be provided in the assignCredit() method to determine the health of the

Goal as well as the success or failure of the current active Rule.

7. Public Interface Rule

Rule interface for use with the RELATE architecture. Requires the user to define

the method "calculate" which receives a sensedEnvironment object and returns an object

representing the result of the rules calculation. A toString() method is required to assist in

the display and evaluation of the Rule.

8. Public Interface Personality

Defines the minimum requirements for a Personality in the RELATE architecture.

This should be a simple data structure can be modified or added to for expandability.

Personality is used to influence goal selection and measurement as well as credit

assignment to rules. Typically they are mathematical factors that capture key aspects of

the individual in the particular situation being modeled.

59

Example personality traits could include the following:

• Loyalty - An agent’s propensity to reward a Rule when it was successful.

• Persistence - An agent’s propensity to penalize a Rule when it fails.

• Tolerance - An agent's ability to reward varying degrees of accuracy.

• Obedience – An agent’s propensity to take direction from another source.

• Independence – An agent’s propensity to operate alone.

A simulation may be designed to use the same personality for all agents, or randomly

issue personalities to stress variations. Personalities may remain fixed or be allowed to

change based on experience or external pressures.

9. Public Interface SensedEnvironment

A SensedEnvironment is a complex data structure unique to the simulation and

defined by the developer. It must contain appropriate data members to store all aspects of

the perceived environment. This interface requires the developer to implement methods

to get the SensedEnvironment object, as well as a vector of the sensed agents that is used

by the RelationshipManager.

10. Public Interface Sensor

Interface for sensor objects to be used in RELATE. These objects are defined by

the developer as a way of describing specific sensor capabilities for agents. Sensor

objects are not currently implemented in any reference cases but are included in the

RELATE package for future work and conceptualization.

60

11. Public Interface Action

Interface for action objects to be used in RELATE. The developer defines these

objects as a way of describing specific actions agents may be capable of. Action objects

are not currently implemented in any reference cases but are included in the RELATE

package for future work and conceptualization.

F. SUMMARY

This chapter has described the RELATE design paradigm and associated Java

development package. A simple analogy was provided as a training aide that described

agents holding balloon strings trying to find balloons (relationships) to tie them on to. A

recipe for using RELATE to develop MAS simulations that model human and

organizational behavior was provided, as well as descriptions of each of the Java package

classes and interfaces. The next three chapters detail reference cases that were developed

and implemented using the RELATE MAS design paradigm and Java development

package.

61

IV. AN INTRODUCTORY MAS SIMULATION

There are two reasons for perfect or deductive rationality to
break down under complication. The obvious one is that
beyond a certain complicatedness, our logical apparatus
ceases to cope—our rationality is bounded. The other is
that in interactive situations of complication, agents cannot
rely upon the other agents they are dealing with to behave
under perfect rationality, and so they are forced to guess
their behavior. This lands them in a world of subjective
beliefs, and subjective beliefs about subjective beliefs.
Objective, well-defined, shared assumptions then cease to
apply. In turn, rational, deductive reasoning...itself cannot
apply. The problem becomes ill-defined.

 – BRIAN ARTHUR

A. INTRODUCTION

In 1994, Brian Arthur, a leading economist and researcher at SFI, wrote a

groundbreaking paper on inductive reasoning and bounded rationality (Arthur, 1994). In

this paper he presented a seemingly simple problem, based upon the weekly patron

attendance at a local nightspot in Santa Fe, New Mexico. The problem posed could not

be solved using traditional deductive reasoning because of its complex nature. Deductive

reasoning was defined as, “deriving a conclusion by perfect logical processes from well-

defined premises.” The introductory quote above clearly states the reasons why

deductive reasoning fails in this situation.

Arthur outlined a solution using multiple agents and argued convincingly that this

was one of the only methods available that could solve such a problem. In turn, this

62

problem has become widely known as “The El Farol Problem”, and is solved here as an

introductory MAS reference case using the RELATE package.

B. BRIAN ARTHUR’S EL FAROL BAR PROBLEM

The problem is based on the bar “El Farol”, in Santa Fe, New Mexico, which

offers Irish music on Thursday nights. A number of people go to this bar to enjoy both

the music as well as the company of other guests. If few people show up on a particular

night, there is not enough social interaction to make the evening enjoyable. If, on the

other hand, too many people show up, then the bar is over-crowded and patrons are

unhappy. Each week, regular customers must decide whether they will go to the bar,

believing that a good crowd will be present, or stay home, to avoid the unpleasant

experience of an overly crowded bar. A major assumption in the problem is that they

must make this decision independently, without communicating or collaborating with

other patrons. Past performance and current state is also not considered during the

decision-making process. The only information available to patrons is the attendance

from previous weeks. To formalize the problem, the population of patrons will be fixed

at N people total for the duration of the sampling period. If more than 60% of these

people show up on a given night, the bar will be too crowded. Each patron is forced to

make decisions based on what he or she believes other patrons will do. As Arthur states,

this “lands them in a world of subjective beliefs, and subjective beliefs about subjective

beliefs.” Because of the complex interactions and subjective beliefs, the actual week-to-

week attendance is quite unpredictable. The average attendance, however, can be

predicted using a MAS solution similar to that described below.

63

C. A RELATE RECIPE FOR THE EL FAROL BAR PROBLEM

1. Relationships

There is only one relationship necessary to solve the El Farol Bar Problem. The

relationship consists of all the patrons that frequent the bar. One can think of this

relationship as a social club, or drinking club. This relationship will be simply named the

ElFarol relationship. If the problem didn’t specifically prohibit individual members from

communicating with each other, the simulation might allow patrons to form relationships

with smaller groups. That form of cooperation and competition would certainly be an

interesting extension of the original problem, but it is prohibited here.

2. Roles

The single role to be assigned from the ElFarol relationship is that of barMember.

The only obligation associated with this role is that each week the barMember must

decide if it will go to the bar or stay home. In this simple, introductory problem multiple

roles are not used.

3. Goal/Rule/Action Types

Again, since there is only one goal in this simulation, there is only one goal type.

As long as the rules and actions support this goal, this step in the RELATE recipe is

completed. For clarification, however, one could classify the goal/rule/action type as that

of a making a decision whether to attend or stay home. Therefore, the goal/rule/action

type needed is an attendance decision type.

64

4. Goals

The basic goal of every agent in this simulation is to be happy. To accomplish

this goal, an agent must do one of two things:

• Go to the bar and experience a good crowd (attendance <= 60).

• Stay home, and later find out the bar was too full and no one had a good time.

If the agent attended the bar and discovered it was over-crowded, or stayed home

only to learn later that there was a good crowd that night, the agent would not be happy.

The problem statement stipulates that choices are unaffected by previous visits, so it

doesn’t matter to the agent whether it was happy or sad the week before.

5. Rules

The rules used to achieve this goal must take as input a sensed environment

consisting of the historical attendance of the bar, and return as output a predicted

attendance value for the current week. The rules can simply be any kind of mathematical

manipulation of last weeks attendance, or some combination of the past weeks

attendance, that make a prediction about the current weeks attendance.

6. Feedback Mechanism

Since only one goal is defined in El Farol, there was no need for a feedback

mechanism for goal selection. For a slightly more complicated problem, one could also

add a goal of social happiness, which might take into account past performance, or

attendance, to ensure that the individual agent actually goes to the bar every now and

then, just to keep from being lonely.

65

7. Credit Assignment

If a person tries a certain product, and is satisfied with the results, they may be

more inclined to purchase that same product the next time they have to decide among

competing brands. The building strength of this conviction is often determined by the

number of times the product satisfies the customer. At some point, there is little doubt

that the same product will be chosen again. This is known as developing brand loyalty.

If, on the other hand, a product fails to satisfy, the number of times that a customer will

continue to purchase the same product before abandoning it is called persistence. This is

the same as holding onto a loosing stock until finally, it reaches a low threshold and is

sold. Often it is not sufficient for a product or solution to be good, it must also fully

satisfy the needs of the user. The willingness for an individual to put up with an in-

accurate solution or prediction is called tolerance. Thus, the personality traits used for

the agents in El Farol are:

• Loyalty (L) – credit assigned for being correct.

• Persistence (P) – (negative) credit assigned for being wrong.

• Tolerance (T) – fixed number for prediction accuracy calculation.

These personality traits were selected to assign credit to rules for being correct,

penalize them for being incorrect, and reward them for being accurate. A rule is

successful if it predicts an attendance on the same side of the “good crowd” number that

the actual attendance is on. For example, if the total number of barMembers was 100,

then 60 would be the maximum number of clients that the bar could hold before it

became too crowded. If a certain rule predicted there would be 78 agents attending, the

66

action selected to satisfy the goal would be to stay home. If the actual attendance were

62, then the rule would have been successful. Staying home was the right decision. On

the other hand, if the rule had predicted 59 agents would attend and the actual attendance

was 62, then the rule would have failed. One can see, however, that although in the first

case the rule correctly predicted that the bar would be overcrowded, it was not very

accurate in its prediction. The rule in the second case, although incorrect in its prediction

of overcrowding, more accurately predicted actual attendance. As this method of credit

assignment is repeated week after week, individual rules begin to earn a reputation of

being reliable predictors (Figure 11).

Figure 11. El Farol Personality

67

Credit (w) is assigned to each rule based on the individual agent’s personality

traits (L, P, and T), the success (s = 1) or failure (s = 0) of the rule at predicting bar

attendance, as well as the accuracy of its prediction (a = 1, if prediction is within

tolerance; a = 0, if prediction is outside of tolerance). As a rule gains more credit for

being correct, its reputation rises. Each agent is issued a small collection of rules, but

only uses the rule with the highest credit assignment, or weight. If a rule continues to

perform poorly, it will receive more and more negative credit, and eventually reach a

threshold that the agent chooses to turn it in for a new rule. This method of trading in

rules allows the agent to explore a large number of rules in the total rule set and find the

ones that are best suited for its personality.

D. A RELATE SOLUTION

The design structure developed using the RELATE recipe above is outlined and

illustrated in Appendix C. This reference case is very simple in that there is only one

relationship, role, and goal. It is very complex, however, in the rule base and credit

assignment affecting rule selection.

1. El Farol Rules

32 different rules were created and distributed randomly in groups of seven to

each agent. These rules are all mathematical or logical rules. They are written as

methods that receive an attendance history vector and return a predicted attendance

integer value. The mathematical representation of the rule is actual found in the

calculate() method in the Rule object. The authors acknowledge that implementing

68

several Rule objects, with one attendance prediction algorithm method each, is actually

more work than is required to solve the problem. Because this problem is so basic and

does not utilize the main feature of the RELATE architecture, namely multiple

relationships, it would be easier to simply write a big switch statement inside the Goal

itself, that includes all of the rules. Figure 12 provides an example rule definition. See

the RELATE Release Notes provided in Appendix B for access to all rules and El Farol

source code.

public class Rule3 implements Rule
{
 Vector calcVec;
 int total;
 int prediction;
 ElFarolSensedEnvironment sensedEnv;

/**
 * no argument constructor
 **
 */
 public Rule3()
 {
 total = 0;
 }

/**
 * Calculates the average of last four weeks.
 * @return an Object (Integer) depicting predicted attendance.
 **
 */
 public Object calculate(SensedEnvironment pSE)
 {
 sensedEnv = (ElFarolSensedEnvironment)pSE;
 calcVec = sensedEnv.getSensedAttendance();

 for(int count = 0; count < 4; count++)
 {
 total += ((Integer)(calcVec.elementAt(count))).intValue();
 }// end for

 prediction = total / 4;

 //clean up
 total = 0;

 return new Integer(prediction);
 }

}// end Rule3 class

Figure 12. Sample El Farol Rule Algorithms

69

2. Graphical Output

When implementing a RELATE MAS solution such as this, the developer must

design an appropriate user interface. Since there is little to be gained by watching

barMembers actually moving to and fro, and more to be gained by evaluating the

statistical data generated from the model, a graph output was created. This output

displays the actual weekly attendance and the running average. The screen shot shows a

run based on 100 agents using 7 rules per agent. The run covers a period of 100 weeks

(Figure 13).

Figure 13. El Farol Attendance Output

Although the weekly attendance (jagged line in blue) varies chaotically, this was

expected due to the dynamic nature of the problem. Over time, however, the average

70

attendance (smoother line in magenta) quickly stabilized to the “good crowd” number of

60. Note that the final average attendance number is 60.32 and stabilized near 60 around

week 10.

E. SUMMARY

The RELATE architecture supports the mechanisms needed to solve the El Farol

Bar Problem. This problem demonstrated dynamic active rule selection from a large pool

of potential rules.

Future work on RELATE El Farol could include:

• Improving the GUI interface to allow the user to adjust various parameters

prior to the run including number of agents, total number of weeks, number of

rules per agent, and good crowd number.

• With slight modifications, the successful rule sets could be combined over

time using Genetic Algorithms (GA) to cause the fluctuations of actual

attendance to be damped.

• Add an additional goal involving social satisfaction. As it stands, an

individual barMember may seldom go to the bar, but overall, because of the

bar attendance, may be happy. With the additional social goal, the member

may become unsatisfied with continued poor experiences.

• Converting the program to run as an Applet so that it would be available for

web-based viewing.

71

V. ADDING AGENTS TO A NETWORKED DIS-JAVA-VRML
SIMULATION

The IEEE Distributed Interactive Simulation (DIS)
Protocol is used to communicate state information (such as
position, orientation, velocities and accelerations) among
multiple entities participating in a shared network
environment. Java is a portable networked programming
language that can interoperate on any computer that
includes a Web browser. The Virtual Reality Modeling
Language (VRML) enables platform-independent
interactive three-dimensional (3-D) graphics across the
Internet, and can be used to compose sophisticated 3-D
virtual environments. – DON BRUTZMAN

A. INTRODUCTION

The Naval Postgraduate School’s (NPS) Modeling, Virtual Environments and

Simulation (MOVES) Academic Group is an “interdisciplinary department dedicated to

education and research in all areas of modeling, virtual environments and simulation”

(MOVES, 2000). A particular focus of study involves research and development of

enabling methods for Large Scale Virtual Environments (LSVE). Capture the Flag

(CTF), a distributed DIS-Java-VRML simulation, has been developed and improved

since 1996 by students and faculty associated with the MOVES Academic Group. In

particular, Professor Don Brutzman has used CTF as a test-bed for LSVE’s associated

with the DIS-Java-VRML Working Group and the Physically Based Modeling course he

teaches at NPS (DIS-Java-VRML, 2000). An excellent test of the RELATE architecture

was to add relation-centric agents into this existing distributed simulation.

72

B. CAPTURE THE FLAG

 CTF is a 3-D virtual battle space modeled after a 2500-square kilometer portion

of the Ft. Irwin terrain, located in the southern California desert. Users of this distributed

simulation control tanks or helicopters to attempt to capture their opponent’s flag and

return it to the users home base. Both tanks and helicopters have the ability to maneuver

and shoot weapons. Vehicle manipulation is accomplished via separate control panels for

each entity. Typically, a group of players will start up CFT applications on a number of

computers connected on the same Local Area Network (LAN), and each will control a

single entity. If they conduct team play, they must agree on the teams before hand and

coordinate actions verbally, assuming they are in the same room or space. When

demonstrating this software, a number of computers must be reserved and volunteers

must be found to operate each entity. RELATE agents offer a solution to this problem.

By incorporating self-organizing agents into CTF, players are able to start up a squad of

agents and play against them without any other human players. Alternatively, a single

player can play a team of agents against another player’s team, simply by choosing the

composition of the team. The addition of agent-driven capability also makes it much

easier for a single person to demonstrate CTF to visitors. One person can start up one or

two computers and set two squads of agents against each other without the additional

assistance manning the controls for the entities.

73

C. A RELATE RECIPE FOR CTF AGENT

1. Relationships

The only relationships desired for CTF Agent is a squad relationship. The

intent of these relationships is to balance out offense and defense for each collection

of agent-driven entities. Since the simulation is limited to blue and red forces, and

only three tanks and three helicopters on each side, the two instances of the squad

relationship are BlueSquad and RedSquad. See “Future Work” in section 5, below,

for suggestions of additional relationships.

2. Roles

The roles assigned in CTFAgent are squadLeader and squadMember. Although

the RELATE relationship automatically reassigns the role of leader if the leader is

destroyed, this does not actually happen in CTF Agent. The reason is that, although the

leader may appear to be destroyed, the original CTF never actually truly destroys an

entity. Instead, a destroyed entity is simply repositioned back to its starting point and

allowed to continue.

3. Goal/Rule/Action Types

Action types are limited to vehicle movement. Additional types were not

implemented due to the simplicity of the simulation and time requirements for delivery.

Tank agents shoot at enemy units that enter their sensor range, but this is not handled

through goals and rules. All tanks automatically engage any detected enemy, closest one

first. Shooting capability was not implemented for helicopter agents.

74

4. Goals

Three primary goals are used in the simulation: offense, defense, and coordinate.

The offense goal is to drive to the enemy flag, obtain it, and return to base. The defense

goal is to stay close to your own flag and protect it from all enemy vehicles. The

coordinate goal is used by the squadLeader to balance its squad forces in an attempt to

win the game.

5. Rules For Each Goal

Only one rule per goal was used in the simulation to facilitate rapid development

and to assist in working within the simulations current network design. The rules

correspond directly with the goals and are named offense, defense, and coordinate.

6. Goal Feedback Mechanisms

Goal feedback is accomplished through the leaders direction. There is no direct

link to the agents’ goal via a perceived environment.

7. Rule Credit Assignment

No credit assignment is required since only one rule per goal is used.

D. A RELATE SOLUTION

The design structure developed using the RELATE recipe above is outlined and

illustrated in Appendix D. Three existing CTF classes were modified and four new java

classes were added, in addition to the various required RELATE classes, to provide

autonomous, agent-driven entities. These classes provide the user the ability to select

75

“Agent Driven” for any unit available on the red or blue start panel. The modified

classes are the Referee, the BlueStartPanel and the RedStartPanel. New classes added

include the AgentTankActionInterpreter, AgentHeloActionInterpreter,

AgentTankControlPanel, and AgentHeloControlPanel.

The following paragraphs describe the new features available to CTF, as well as

the tactics employed by the RELATE agents if selected.

1. Red and Blue Start Panels

Figure 14. Red Start Panel with Agent Driven Selected

The only changes to the start panel classes was to modify the panel to include an

“Agent Driven” selection block in the upper right-hand corner, and to launch the

appropriate agent control panel if it is selected (Figure 14). Any tank or helicopter entity

76

normally available to a user can be agent driven simply by selecting this feature, then

starting as usual.

2. Tank Agent

The tank agent uses the same basic control panel as a manually controlled tank,

except that all of the buttons are disabled. The only button that is not disabled is the

“new vehicle” button. The agent updates the heading, speed, and turn rate indicating

blocks, as well as the sliders, as it maneuvers through the battlefield. Main and Aux Gun

Ammo values do not change and never run out. Although the user can physically

manipulate the maneuvering controls (slider bars), the agent will correct these user-

entered speed changes, causing a slight cycling effect. As soon as the user releases the

speed control, the agent’s commands will take full effect.

a. Engaging Enemy Units

All tank agents develop a target list based on a fixed sensor range of

1750m (approximately the same range that a user would be able to visually detect another

entity). Once an entity is detected, a determination is made as to friend or foe. If the

newly detected entity is an enemy unit, it is added to the target list. The tank will always

attempt to engage the closest enemy unit in its target list. The engagement behavior only

controls the aiming and shooting of the main gun. Direction of the vehicle motion is

controlled by the role of offense or defense, as directed by the squad leader.

77

b. Offensive Tank Agent

Figure 15. Offensive Tank Agent

Figure 15 shows an offensive tank approaching the enemy base and flag.

It is shooting at another tank that is engaging a different, off-screen opponent. An

offensive tank will always attempt to capture the enemy flag, wherever it is located,

engaging the closest enemy unit within sensor range. It does this by driving maximum

speed (60 kts) to close the distance to the flag until it has captured it. Its turning radius is

set based on 40% of the desired heading change. Once it captures the enemy flag, it

returns at maximum speed, in a straight line to it’s own base.

78

c. Defensive Tank Agent

Figure 16. Defensive Tank Agent

Figure 16 shows a defensive tank as it drives by it’s own flag, engaging an

unseen helicopter (evident by the super-elevated turret). A defensive tank will always

drive at maximum speed around its own flag, engaging the closest enemy unit within

sensor range. If an enemy unit successfully captures the flag, the defensive tank will

follow the flag, and the enemy unit carrying it, all while continuing to engage the closest

enemy unit with gunfire. If the defensive tank chases the successful enemy unit all the

way back to the enemy base, then destroys the opponent just prior to the flag being won

and point given, the defensive tank will not shift to capture the enemy flag. Instead, it

79

will continue to drive in circles around its own flag, attempting to protect it from any

approaching opponents. The original Capture the Flag code does not allow a unit to carry

its flag back to its own base, so the agent cannot do this either.

3. Helicopter Agent

Figure 17. Helicopter Agent

Figure 17 shows a helicopter carrying the enemy flag back to its own base. The

helicopter agent is, by default, an offensive agent, but it is not capable of shooting.

Aiming the helicopter gun is accomplished by controlling the attitude and direction of the

helicopter. This was not implemented in the helicopter agent due to time constraints and

the complicated nature of CTF helicopter weapon aiming technique. The helicopter

80

agent’s only goal, therefore, is to capture the enemy flag and return it to home base.

When the helicopter gets within 1000m of the enemy flag, it begins a decent algorithm

and flies to within 100m of the flag to capture it. It executes the same decent profile

upon return to home base with the captured enemy flag.

4. Squad Relationship

Squad relationships are formed with the RELATE agents in a central server type

class called “Referee,” which is part of the original CTF. The Referee class was

modified to support the CTF Agent implementation in place of the RelationshipManager.

Squad relationships are formed when two or more, same color, agent-driven vehicles are

started. The implementations of the squads are as described above, but the ramifications

are the automatic assignment of offense or defense to each agent-driven entity created. If

only one agent is created on a particular side (blue or red), no relationship can exist and

the agent is automatically offensive. The rational being that if there is just one agent, the

game can only be won if that agent pursues the enemy’s flag. No points are earned for

defending your own flag, no matter how successful the defender. Once another same-

color, agent-driven entity is started up, a squad relationship is formed and a leader is

assigned. The leader determines the make-up of the squad and ensures a defender always

protects the team’s flag. If the squad is made up of two tanks, one will be assigned

offense, the other defense. If, on the other hand, the squad is made up of a tank and a

helicopter, the tank will always be assigned defense. This is because the helicopter is

unable to defend the flag, since it has no weapons capabilities, but it can capture the

81

enemy flag. If more than two agent-driven entities are started on the same team, one tank

will be assigned defense and all others will be assigned offense. Figure 18 shows a self-

organized squad of three red tanks fighting against a self-organized squad of two blue

tanks and a helicopter. Note the tactic identifiers circled on the three red agent control

panels that show two offensive and one defensive tank control panels.

Figure 18. Capture The Flag Agent Squad

82

5. Future CTF Agent Work

The following additional improvements are suggested for future work that would

improve performance of CTF Agents:

• Currently, an agent’s targeting and shooting is not restricted by line-of-sight.

A target is acquired once it is within sensing range, regardless of whether it

can actually be “seen” from the point of view of the agent. An isVisible()

method is needed that checks to make sure entities are visible prior to adding

them to the targetList. This will probably be accomplished by simply

utilizing the existing line-of-sight algorithm. Terrain collision detection needs

to be integrated so that rounds cannot be fired through mountains.

• The agent helicopter needs the ability to shoot. This would be a good class

project for a student studying DIS-Java-VRML and agent based simulations.

Once the agent helicopter can shoot, then it should be modified similar to the

tanks so that it can be assigned roles of offensive and defensive and be a full

member of the team.

• Agents should have the ability to alter their motion to avoid or close enemy

units, vice always just driving to the enemy or friendly flag.

• Agents should have the ability to dynamically shift their goal priorities to take

advantage of the changing environment, such as when a defensive agent finds

itself near the enemy flag after its team looses a point (which returns both

flags to their respective home bases).

83

• Allow the formation of helicopter/tank team relationships, where the

helicopter defends the tank as they both go to capture the enemy flag.

• Improve the goal feedback mechanism to include a measurement of the state

of each flag.

E. SUMMARY

By adding relation-centric agents to an existing distributed simulation, CTF Agent

provided an invaluable reference case. There was no attempt to drastically alter the

networking or run time execution of the code. This led to interesting problems that

would have not had to be dealt with if a similar simulation were to be designed from

scratch instead. Even with these limitations, however, the RELATE architecture greatly

simplified assembling the required components. The result of adding these agent has led

to new and fascinating areas of study and design that were previously unavailable.

84

THIS PAGE INTENTIONALLY LEFT BLANK

85

VI. A SITUATED LAND-COMBAT MODEL

Most traditional models focus on looking for equilibrium
‘solutions’ among some set of (pre-defined) aggregate
variables…ISAAC focuses on understanding the kinds of
emergent patterns that might arise while the overall system
is out of, or far from, equilibrium. - ANDY ILACHINSKI

A. INTRODUCTION

The study of land combat has been the primary focus of military simulations for

decades. Recently, there has been a concentrated effort at augmenting these models with

agent models that simulate human decision-making and organization. Andy Ilachinski’s

ISAAC is a first step in this arena (ISAAC, 2000). To demonstrate the capability of the

RELATE design paradigm and architecture, a simulation similar to ISAAC was developed

in about three weeks. Since it is only an example of the potential capabilities of

RELATE, it does not have all the functionality of ISAAC in many respects, yet has more

accurate modeling in respect to organizational hierarchy and dynamic goal selection.

Because of this, JACOB only resembles the original ISAAC, and thus the modifier, “Son

of ISAAC.” Appendix A provides additional information on ISAAC and the follow-on

simulation environment, EINSTein.

B. JACOB (SON OF ISAAC)

JACOB was designed as a test-bed to demonstrate how the RELATE architecture

can be used to create a simulation similar to Ilachinski’s ISAAC. Like ISAAC, JACOB

takes place in a 2-D battle-space with agents graphically represented by blue and red

86

dots. This is where the similarity ends. The RELATE implementation focuses on a

dynamic relationship structure that allows qualified agents to join or form relationships as

their sensed environment changes. These agents then base their movement,

communication and shooting actions on their assigned roles and goals.

C. A RELATE RECIPE FOR JACOB

1. Relationships

The relationships found in JACOB are BlueArmy, RedArmy, Squad, and

Company. Although not completely representing an accurate company formation, since

it is missing the platoon level, JACOB provides a close approximation to the organization

often seen with unit strengths of around 100 soldiers. The army relationships are needed

to be able to distinguish opposing sides, similar to uniforms or badges.

2. Roles

The roles in JACOB correlate directly to realistic roles one would find in these

typical organizational relationships. For simplification purposes, only a few of the

actually occurring roles are included. The roles are Soldier, SquadMember,

SquadLeader, CompanyMember, and CompanyCommander.

3. Goal/Rule/Action Types

The action types developed for the JACOB simulation were limited to: movement,

communication, and shooting. This allows competing and non-conflicting goals to exist

within the agents. It also provides a straightforward example of dynamic goal selection.

87

4. Goals

JACOB provides numerous goals, of all allowed types, within each assigned role.

These goals range from “maintaining unit cohesion,” in the Squad Member role, to “keep

Company Commander informed,” in the Company Member role. A complete list of

goals is given in Appendix E.

5. Rules For Each Goal

Only one rule is provided for each goal. This was deemed sufficient to

demonstrate the hierarchical nature of the RELATE package. Additional rules can be

included similar to the El Farol simulation discussed in Chapter IV. Movement rules

return a new location for the agents, communication rules return a “JACOB Agent

Report” object filled with specific information about the agent or squad, and shooting

rules actually decrement the health of enemy agents.

6. Goal Feedback Mechanisms

Keeping with the RELATE design, all goals have a feedback mechanism

device that allows them to develop a current weight based on the agents personality,

the changing environment, and the direction of it’s superiors. All goals use a standard

formula for determining this weight that incorporate the following terms:

• Goal attainment (ĝi) - The measurement of how close an agent’s current

situation is to fulfilling the ith goal (gi).

• Goal personality factor (pi) – The personality trait that influences gi.

88

• Agent goal weight (Awgi) – The weight that gi has that affects the agent’s next

decision. Awgi is determined from the agent’s current perceived goal

attainment value and the agent’s goal personality factor (i.e. how much the

agent cares about that particular goal being satisfied):

Awgi = Aĝi * Api

Equation 1. Agent Goal Weight

• Leader’s goal weight (Lwgi) – The weight that the gi has that affects the

leader’s next decision. It is determined from the leader’s current perceived

goal attainment value and the leader’s goal personality factor for that

particular goal (i.e. how much the leader cares about the goal being satisfied):

Lwgi = Lĝi * Lpi

Equation 2. Leader Goal Weight

• Agent’s obedience factor (θθθθ) – The extent to which an agent obeys its leader.

• Final Goal Weight (Wgi) – The final weight for the ith goal based upon the

agent’s goal weight and a portion of the leader’s goal weight as modified by

the agents obedience factor:

Wgi = Awgi + (θθθθ * (Lwgi - Awgi)

Equation 3. Final Goal Weight

In basic terms, the agent has a will of it’s own for achieving various goals. The

leader attempts to exert influence on the subordinate, but this influence is tempered by

89

how well the subordinate follows orders. This includes positive as well as negative

influence. It is the difference in goal weights, or concern for the goal, that is added or

subtracted from the agent’s own goal weight.

7. Rule Credit Assignment

Since there is only one rule per goal, rule credit assignment is not currently

utilized in this simulation.

D. A RELATE SOLUTION

The design structure developed using the RELATE recipe above is outlined and

illustrated in Appendix E. It is clear after looking at the schematic representation of

JACOB, especially compared to the previous two reference cases, that JACOB is much

more complex. Not only does it have agents that are members of more than one

relationship, but also there is a highly structured chain of command. JACOB consists of

over 50 classes and hundreds of methods. The task of putting this simulation together

and managing the interactions was greatly reduced by using the RELATE design recipe.

The reader is reminded that the overall goal of JACOB was to exercise the dynamic goal

selection and self-organizing behavior often seen in company strength groups. Much

more work is needed to incorporate functionality similar to ISAAC, making this a useful

model of land combat. The following sections describe various features of JACOB, as

well as their limitations at this stage of development. The working code for this

simulation, as well as all the RELATE source code, is available on-line and in the

attached CD-ROM, as described in Appendix B.

90

1. Simulation Agent Editor

JACOB was built with a Simulation Agent Editor that was designed to allow the

user access to selected red or blue variables (Figure 19). The simulation is preset with

specific values that are tuned for the current goals and rules. Until further work is

accomplished tuning the simulation, changes to these values will produce predictable, but

undesirable results. In particular, changing the agent’s sensing range causes the agents to

veer off to the left or right, instead of engaging the enemy or moving in the direction of

the enemy’s flag. Changes in agent speed also have no affect on the actual speed of the

agent across the virtual battlefield.

Figure 19. Simulation Agent Editor for JACOB

91

2. Loading and Saving Environments

After accepting the agent variable as listed in the Simulation Agent Editor, the

JACOB window opens up, as well as a blank Agent’s Statistics window. The user

continues by selecting the start button and then has an option of using an open

environment, loading a stored environment, or creating a new environment.

a. Using An Open Environment

If the user wants to use an open environment with no obstacles, mountains

or tree cover, then all that is needed to continue is to press the “cow” button (see Section

3 below).

b. Loading A Stored Environment

To load a previously saved stored environment, or the sample environment

included with the simulation, the user should use the File pull-down menu at the upper

left of the simulation window, and select Load Environment (Figure 20).

Figure 20. Loading a JACOB Sample Environment

92

c. Creating A New Environment

To create a new environment, JACOB allows the user to select any

position on the simulated battlefield, called a floor object, and designate specific

attributes (Figure 21). A Floor Object Data editor will appear and allow the user to

specify the elevation (0, 1, or 4), and whether or not it is covered (1) or not (0). If a floor

object’s elevation is set to 4, it is an obstacle and no agent can cross over it or reach the

top of it.

Figure 21. Adding Floor Objects in JACOB

Once an environment is created, it can be saved for reuse, or the

simulation can be started without saving it, by pressing the “cow” button. After the

simulation run, this environment will not be available again without recreating it from

scratch. To save an environment, Save Environment is selected from the File pull-down

menu. After the new environment is saved, the simulation can be started by pressing the

“cow” button.

93

3. Starting The Simulation

To start the simulation, the user presses the “cow” button (Why a cow? -- Why

not?). As of this writing, there are no sound effects associated with this button. Agents

will appear near their flags in opposite corners and the simulation will commence. Figure

22 shows the beginning of a simulation using the sample environment. Red agents are at

the upper right, and blue agents at the lower left. The black squares seen in the center are

obstacles. Other elements in the center are hills and foliage.

Figure 22. JACOB Sample Screen Shot

94

4. Pausing The Simulation

The simulation can be paused momentarily by pressing the stop button. Figure 23

shows a paused battle. Notice the blue squad breaking out towards the upper right. The

light colored agent at the front is the squad leader of this group of agents. Notice also the

scattered cluster of blue agents at the lower left, near the blue flag. They were unable to

form squad relationships due to conditions not being met. There is not a sufficient

number in either the group to the left and above the flag, or the group to the right, beside

Figure 23. Battle Simulation in JACOB

95

the flag. Since they cannot sense each other, or the enemy, they remain stationary.

Future work is needed in this area to include motivation to move about so that they find

sufficient numbers to form a squad.

5. The Brain Lid

Figure 24. JACOB Brain Lid

96

While the simulation is paused, the user can select any agent displayed and get

information on why the agent is doing what it is doing. This new window is called a

“Brain Lid”, because it allows the user to ‘open up an agents lid and see what makes it

tick’ (Figure 24). The Brain Lid displays the selected agent’s personality and any

relationships it belongs to in the upper portion, the agent’s movement goals and their

associated goal weights in the middle portion, as well as it’s health, and the agent’s

sensed environment in the bottom portion. The sensed environment section displays the

selected agent in the center, and all things that the agent can see in its sensor range. Line-

of-sight has not been implemented in JACOB, as evident by the visible blue agents on the

opposite side of the obstacle. A shadow-mask algorithm is needed to cast shadows on all

areas not visible to the center, selected agent.

Another feature built into JACOB is that when an agent is selected as discussed

above, not only does the Brain Lid appear, but the agent’s color also changes to green. If

it is a squad leader, all of it’s squad members change color to light green. If it is a squad

member, its leader is highlighted in light green.

6. Dynamic Goal Selection

There are a number of examples that clear illustrate the dynamic goal selection

caused by changing environmental parameters as well as newly formed relationships.

Two such examples will be discussed below. Unfortunately due to black and white

printing, graphics associated with these examples do not show up well. Verbal

97

descriptions will be provided, and one color figure will be included in the first example

for viewing by Internet or CD-ROM of this thesis.

a. Forming A New Squad

Besides the initial squad formation at the beginning of a simulation run,

dynamic squad formation often occurs with the agents that were unable to form squad

relationships. This usually happens when the opposing force breaks through the main

battle and approaches the enemy flag. Figure 25 shows a group of blue agents coming up

from the lower left. The groups of red agents, enclosed in circles, are stationary.

Figure 25. Blue Squad Approaching Stationary Red Agents

The stationary agents are not members of squads, and thus receive no external guidance

on which direction to move. At this point, the red agent’s only goals are those associated

with being a soldier in the army relationship: MaximizeEnemyCasualites, SeekFriendly,

MinimizeInjury, and EngageEnemy. The reasons why none of these four goals has any

98

affect on the agent’s motion are highlighted below.

• MaximizeEnemyCasualites – This is a shooting-type goal and has no effect on

an agent’s motion.

• SeekFriendly – Each of these agents can detect friendly agents. This rule does

not require them to get closer, or seek a minimum amount of friendlies.

• MinimizeInjury –Since there are no enemies shooting at them, and none of

these agents are injured, this rule has no effect.

• EngageEnemy –There are no enemies within sensor range.

When the blue squad comes within sensing range of the red agents, they

move to fulfill the EngageEnemy goal. This causes each red group to finally sense the

other and they form a squad relationship. Figure 26 shows this formation, and the newly

assigned leader in the middle of the circle.

Figure 26. Red Agents Forming Squad

99

Now that the red agents have a squad leader, they receive new direction

from the Company Commander, via the Squad Leader. Figure 27 shows the newly

formed red squad breaking off engagement and moving down and to the left towards the

blue flag.

Figure 27. Red Squad Moves To Enemy Flag

b. Waiting For Stragglers

A similar example can be shown when a squad is disrupted during a battle.

Once a squad if formed, the Squad Leader is in communication with each of his

members. Because of this, if a squad member is held back from the squad, caught up in a

quagmire of agents, the Squad Leader will hold the rest of the squad back, preventing

them from going after the enemy flag while it waits for the stragglers to free themselves.

If the stuck squad members die and there are still enough squad members left in the

relationship, the Squad Leader will recognize this and press on to the objective. If

100

enough squad members die that the relationship can no longer exist, the squad will be

disestablished and individual members will attempt to join other squads or reform new

squads. Figure 28 shows a series of screen captures with a Squad Leader (in the

diamond) and his partially stuck squad (all identified in the mass by circles). The

sequence starts with the leader waiting for the stuck squad members, holding the other

two back (Figure 28-1). Next, some of the members have freed themselves, but the

leader still waits for stragglers (Figure 28-2). The last stuck member is killed, allowing

the leader to begin moving (Figure 28-3). Finally, all of the members are free and

following the leader towards the enemy flag (Figure 28-4).

Figure 28. Waiting For Stragglers

101

7. Agent Statistics

It is recognized that models such as JACOB produce emergent behavior that is

sometimes predictable, but often surprising. To help understand a particular run, or to

collect data over a number of runs for analysis, certain statistical data must be recorded

and displayed. Although insufficient for multiple runs, the Agent Statistics window that

can be seen updating during the simulation run provides an example of methods that can

be used to display key information. Figure 29 shows a sample of statistics gathered after

a particular simulation run. This window is included for future developers to use as an

example and starting point for gathering and displaying statistics, as well as any other

data in the simulation.

Figure 29. Agent Statistics in JACOB

102

E. SUMMARY

This reference case provided a dramatic example of the strength of the RELATE

design paradigm as well as the associated Java package. By working through the recipe,

a clear path was established to build the underlying structure required to simulate two

company-sized forces doing battle in a simplified environment. When agents are created

on the battlefield in their opposing corners, the user can watch as squads are formed and

Squad Leaders are assigned. The squads then move off with purpose as they go to

engage the enemy and capture the opponent’s flag. During battle, when attrition occurs,

squads are dissolved and reformed from the bottom up, allowing continuing, dynamic role

assignment and goal selection.

Future work on the JACOB simulation is needed to fully implement design

features only suggested by this first attempt. Additional improvements could include:

• Further tuning of agents personality and goal measurements to make a more

realistic simulation.

• Addition of multiple rules for each of the goals to allow dynamic rule

selection such as that found in the El Farol reference case.

• Improvement of the GUI’s to allow run time manipulation of static variables.

• Tuning and debugging the Simulation Agent Editor to allow the user to define

various sensor ranges, firing ranges and speeds.

• Addition of a sound effect for the “cow” button.

103

VII. CONCLUSIONS AND RECOMMENDATIONS

Everything should be made as simple as possible, but not
simpler. - ALBERT EINSTEIN

A. CONCLUSION

RELATE provides a realistic, believable bottom-up simulation approach for

modeling human decision-making and organizational behavior. The El Farol reference

case demonstrated the ability to model individual decision-making in an unsure

environment. It used multiple rules and could be easily modified to allow GA selection

and discovery of the “best” rule sets, given a specific personality and environment. The

CTF Agent simulation demonstrated the flexibility of the RELATE design paradigm and

development package, allowing agents to be added to an existing, distributed simulation.

The final reference case, JACOB, demonstrated the ability of RELATE agents to self

organize into pre-determined relationships and select from competing goals.

B. RECOMMENDATIONS

The following paragraphs focus on improvements and recommendations for the

RELATE design paradigm, as well as the associated Java classes and interfaces.

Recommendations for improvements to the reference cases were included in their

respective chapter summaries.

• More work is needed refining the Action and Sensor interfaces and their use.

This addresses gaining increased capabilities, either as in individual or as a

104

group when forming relationships. Also, some relationships may take away

from, or diminish, existing capabilities.

• More work is needed in identifying and dealing with various obligations

associated with forming relationships, as well as commitments to fulfilling

these obligations. Agents may begin to earn reputations as they have multiple

relationships.

• More work is needed smoothly integrating GA into RELATE agents to allow

them to selectively improve their rule sets and explore leverage points in the

environment.

• Additional relationships could be added to the potential relationship list once

an agent is in another relationship.

• Dynamic relationship discovery mechanisms should be explored to allow

agents to form relationships based on needs, capabilities, etc., vice a pre-

determined list of potential relationships.

• Finally, explorations into the different meaning of relationship, that of

association of ideas and concepts, using RELATE, or some derivative of

RELATE, could yield interesting and powerful breakthroughs in the modeling

of human cognition.

105

GLOSSARY

• Agent - A software object that perceives its environment through sensors and acts

upon that environment through effectors to achieve one or more goals.

• Model – A description or analogy used to help visualize something that cannot be

directly observed.

• Coordination – The act of managing interdependencies between activities performed

to achieve a goal.

• Simulation – A method for implementing a model to play out the represented

behavior over time.

• Adaptation – The process of modifying ones behavior over time to advantageously

form a better fit to the environment.

• Complex adaptive system (CAS) – A self-organizing system that maintains coherence

in a changing environment through interactions and adaptation.

• Learning - The acquisition of knowledge, formation of associations, and modification

of behavior to improve performance based on exposure to and exploration of the
environment.

• Evolution – A process of continuous change from a lower, simpler, or worse state to a

higher, more complex, or better state.

• Multi-agent system (MAS) – A system in which several interacting, intelligent agents

pursue some set of goals or perform some set of tasks.

• MAS simulation – A rich, bottom-up modeling technique that uses diverse, multiple

agents to imitate selected aspects of the real world system’s active components.

• Supervised learning (or observational learning) – Learning from examples provided

by a knowledgeable external supervisor or by observing others performing the same
task or ability.

• Unsupervised learning (or autonomous learning) – Any type of learning that does not

involve examples, expert advice, or direction.

• Relationship – The assembly of relations, i.e. understandings and/or commitments,

between mutually interested parties that link certain individuals to others.

106

THIS PAGE INTENTIONALLY LEFT BLANK

107

APPENDIX A: SURVEY OF MAS SIMULATION
ARCHITECTURES

Almost every major researcher has a methodology that they think is best for their

particular area of study. Each of these models are well suited for the study of CAS in the

context that they were designed. Almost none of them are readily available or easily

understandable to the novice researcher. Some are available from the internet, but at the

time of this writing, only a few can be successfully downloaded and run on a standard

desktop computer or workstation without loading other additional software or having a

specific operating system. Many of these researchers are currently working on Java

based implementations to allow portability of their application or toolkit. Others are

working on the extensibility of their code to allow web-based simulations. Most of the

information presented in this Appendix has been obtained directly from applicable web

sites or papers, modified only for clarity and ease of understanding. It is not the authors’

intention to claim the following summaries as their own work, but merely to gather and

present this information in an easily understandable format. The following summaries

are provided as an aide for fellow researchers and interested parties in MAS simulations.

1. Echo (http://www.santafe.edu/projects/echo/)

Presented by John Holland and refined by researchers at the Santa Fe Institute and

Central Michigan University, this simulation architecture was used to investigate the

mechanisms that regulate diversity and information-processing in systems comprised of

http://www.santafe.edu/projects/echo/

108

many interacting adaptive agents, or CAS. Echo abstracts away virtually all of the

physical details of real systems and concentrates on a small set of primitive agent-to-

agent and agent-to-environment interactions. The extent to which Echo captures the

essence of real systems is still largely undetermined. The goal of Echo is to study how

simple interactions among simple agents lead to emergent high--level phenomena such as

the flow of resources in a system or cooperation and competition in networks of agents

(e.g., communities, trading networks, or arms races). Echo agents interact via combat,

trade and mating and develop strategies to ensure survival in resource-limited

environments. Individual genotypes encode rules for interactions. In a typical

simulation, populations of these genomes evolve interaction networks that regulate the

flow of resources. Resulting networks resemble species communities in ecological

systems. Flexibly defined parameters and initial conditions enable researchers to conduct

a range of "what-if" experiments (Holland, 1995).

An Echo world consists of a lattice of sites. Each is populated by some number of

agents, and there is a measure of locality within each site. Sites produce different types of

renewable resources; each type of resource is encoded by a letter (e.g., “a,” “b,” “c,” “d”).

Different types of agents use different types of resources and can store these resources

internally. Sites charge agents a maintenance fee or tax. This tax can also be thought of as

metabolic cost.

Agents fight, trade and reproduce. Fighting and trading result in the exchange of

resources between agents. There is sexual and non--sexual reproduction, sexual

109

reproduction results in offspring whose genomes are a combination of those of the

parents. Each agent's genome encodes various genes which determine how it will interact

with other agents (e.g., which resource it is willing to trade, what sort of other agents it

will fight or trade with, etc.). Some of these genes determine phenotypic traits, or ``tags''

that are visible to other agents. This allows the possibility of the evolution of social rules

and potentially of mimicry, a phenomenon frequently observed in natural ecosystems.

The interaction rules rely only on string matching.

Echo has no explicit fitness function guiding selection and reproduction. An agent

self--reproduces when it accumulates a sufficient quantity of each resource to make an

exact copy of its genome. This cloning is subject to a low rate of mutation. (Echo, 2000)

2. Swarm (http://www.swarm.org/)

A multi-agent software platform developed by Chris Langton, for the simulation

of CAS. In the Swarm system the basic unit of simulation is the swarm, a collection of

agents executing a schedule of actions. Swarm supports hierarchical modeling

approaches whereby agents can be composed of swarms of other agents in nested

structures. Swarm provides object-oriented libraries of reusable components for building

models and analyzing, displaying, and controlling experiments on those models. Swarm

is currently available as a beta version in full, free source code form. It requires the GNU

C Compiler, Unix, and X Windows. (Minar, et al. 1996)

http://www.swarm.org/

110

3. SugarScape (http://www.brook.edu/SUGARSCAPE/)

Developed by Robert Axtell and Joshua Epstein at the Center on Social and

Economic Dynamics (CSED), Brookings Institute, Washington, D.C., Sugarscape can be

used to model a variety of complex situations -- including an entire proto-history,

complete with cultural evolution, population pressures, and warfare. Rather than design

models from stem to stern, the authors grow them by imposing a few simple rules on

Sugarscape's agents, then studying the aggregate effects of the resulting interactions.

Sugarscape is presented in (Axtell and Epstein, 1996), a groundbreaking book that posits

a new mechanism for studying populations and their evolution. By combining the

disciplines of cellular automata and "artificial life", Epstein and Axtell have developed a

mechanism for simulating all sorts of emergent behavior within a grid of cells managed

by a computer. In their simulations, simple rules governing individuals' "genetics"" and

their competition for foodstuffs result in highly complex societal behaviors. The authors

explore the role of seasonal migrations, pollution, sexual reproduction, combat, and

transmission of disease or even "culture" within their artificial world, using these results

to draw fascinating parallels with real- world societies. In their simulation, for instance,

allowing the members to "trade" increases overall well-being but also increases economic

inequality. In Growing Artificial Societies, the authors provide a workable framework for

studying social processes in microcosm, a thoroughly fascinating accomplishment.

(Sugarscape, 2000)

http://www.brook.edu/SUGARSCAPE/

111

4. StarLogo (http://el.www.media.mit.edu/groups/el/Projects/starlogo/)

StarLogo was developed by Mitchel Resnick at the MIT Media Lab ,

Epistemology and Learning Group, Massachusetts Institute of Technology (MIT),

Boston, MA (Resnick, 1998). It is a programmable modeling environment for exploring

the workings of decentralized systems -- systems that are organized without an organizer,

coordinated without a coordinator. With StarLogo, the user can model (and gain insights

into) many real-life phenomena, such as bird flocks, traffic jams, ant colonies, and market

economies. In decentralized systems, orderly patterns can arise without centralized

control. Increasingly, researchers are choosing decentralized models for the organizations

and technologies that they construct in the world, and for the theories that they construct

about the world. But many people continue to resist these ideas, assuming centralized

control where none exists -- for example, assuming (incorrectly) that bird flocks have

leaders. StarLogo is designed to help students (as well as researchers) develop new ways

of thinking about and understanding decentralized systems. StarLogo is a specialized

version of the Logo programming language. With traditional versions of Logo, you can

create drawings and animations by giving commands to graphic "turtles" on the computer

screen. StarLogo extends this idea by allowing you to control thousands of graphic turtles

in parallel. In addition, StarLogo makes the turtles' world computationally active: you can

write programs for thousands of "patches" that make up the turtles' environment. Turtles

and patches can interact with one another -- for example, you can program the turtles to

http://el.www.media.mit.edu/groups/el/Projects/starlogo/

112

"sniff" around the world, and change their behaviors based on what they sense in the

patches below. StarLogo is particularly well-suited for Artificial Life projects.

5. ISAAC-EINSTien (http://www.cna.org/isaac/default.htm)

ISAAC is an acronym for Irreducible Semi-Autonomous Adaptive Combat. It

was designed by Andrew Ilachinski at the Center for Naval Analysis (CNA) in the early

1990’s. ISAAC is a combat model designed to allow the user to explore the evolving

patterns of macroscopic behavior that result from the collective interactions of individual

agents, as well as the feedback that these patterns might have on rules governing the

individual agents’ behavior (Ilachinski, 1995). EINSTein is a follow-on project that takes

lessons learned from ISAAC and incorporates much more functionality, as well as a

windows-based development environment.

ISAAC/EINSTein are simple multiagent-based "toy models" of land combat that

are being developed to illustrate how certain aspects of land combat can be viewed as

emergent phenomena resulting from the collective, nonlinear, decentralized interactions

among notional combatants. These models take a bottom-up, synthesist approach to the

modeling of combat, vice the more traditional top-down, or reductionist view, and

represent a first step toward developing a complex systems theoretic analyst's toolbox (or

"conceptual playground") for exploring high-level emergent collective patterns of

behaviors arising from various low-level (i.e., individual combatant and squad-level)

interaction rules. The idea is not to model in detail a specific piece of hardware (M16

rifle, M101 105mm howitzer, etc.), but to provide an understanding of the fundamental

http://www.cna.org/isaac/default.htm

113

behavioral tradeoffs involved among a large number of notional variables. In ISAAC and

EINSTein, the final outcome of a battle -- as defined, say, by measuring the surviving

force strengths -- takes second stage to exploring how two forces might co-evolve during

combat. (ISAAC, 2000)

6. AgentBuilder (http://www.agentbuilder.com)

AgentBuilder is a commercially available integrated software development tool,

available from Reticular Systems, Inc. It allows software developers with “no

background in intelligent systems or intelligent agent technologies” to quickly and easily

build intelligent agent-based applications. AgentBuilder reduces development time and

development cost and simplifies the development of high-performance, robust agent-

based systems. (AgentBuilder, 2000)

Software developers need a set of tools that will aid them in developing agent-

based applications. Tools are needed that can help the software developer analyze the

application domain; formally recognize and describe the concepts, relationships and

objects relevant to that domain, and specify the behavior of the agent(s) operating in that

domain. The software developer also needs tools that can specify a collection of agents;

analyze and specify the messages and message protocols between agents; and execute

and evaluate the actions of the agents. Reticular Systems, Inc. has developed the

AgentBuilder toolkit which provides these capabilities. The AgentBuilder product

consists of two major components: the development tools and the run-time execution

environment. The development tools are used for analyzing an agent’s problem domain

http://www.agentbuilder.com/

114

and for creating an agent program that specifies agent behavior. The run-time system

provides a high-performance agent engine that executes these agent programs. Agents

constructed using AgentBuilder communicate using the Knowledge Query and

Manipulation Language (KQML) and support the performatives defined for KQML. In

addition, Agent-Builder allows the developer to define new interagent communications

commands that suit his particular needs. The AgentBuilder toolkit and the run-time

engine are implemented using the Java programming language. Thus, AgentBuilder will

run on any platform that supports Java development. Agents created with AgentBuilder

are themselves Java pro-grams and will execute on any platform with a Java virtual

machine.

AgentBuilder allows software developers with no background in intelligent

systems or intelligent agent technologies to quickly and easily build intelligent agent-

based applications. AgentBuilder reduces development time and development cost and

simplifies the development of high-performance, robust agent-based systems.

7. Sim_agent Toolkit (http://www.cs.bham.ac.uk/~axs/cog_affect/sim_agent.html)

Developed at the University of Birmingham’s School of Computer Science,

Sim_agent Toolkit uses the Pop-11 language in the Poplog software development

environment. Pop-11, like Common Lisp, is a powerful extendable multi-purpose

programming language supporting multiple paradigms. Within the Poplog environment it

also supports programs written in Prolog, Common Lisp or Standard ML. The current

version of the toolkit is very general and flexible, though perhaps not as easy to use as a

http://www.cs.bham.ac.uk/%257eaxs/cog_affect/sim_agent.html

115

toolkit dedicated to a particular type of architecture. Designed to explore architectural

design requirements for intelligent human-like agents, as well as others kinds of agents.

It provides a facility for rapidly implementing and testing out different agent

architectures, including scenarios where each agent is composed of several different sorts

of concurrent interacting sub-systems, in an environment where there are other agents

and objects. Agents can have sensors and effectors, and can communicate with other

agents. Agents also have hybrid architectures including, for example, symbolic

mechanisms communicating with neural nets.

8. ACE (http://www.cecer.army.mil/pl/ace/homepage.html)

“ACE is a software environment which facilitates collaboration between design

activities through the use of agents. ACE is applicable to a wide variety of domains

which can benefit from task automation, information processing and group activities.

Agents are small expert systems that are tightly integrated with traditional CAD tools and

other engineering applications. ACE agents communicate with each other using libraries

of design objects such as beams, columns, or footings. Although most agents act under

the user's direction, they can run in the background and act in an advisory capacity. Such

an agent might use rule-based techniques to check for code violations or act as a source

of expertise by making suggestions on improving design quality.”

“The primary role of agents in ACE is as design assistants that use heuristic rules

and a powerful checklist facility to automate routine design tasks, thus enhancing

productivity and ensuring repeatable design quality. Experienced designers can store their

http://www.cecer.army.mil/pl/ace/homepage.html

116

knowledge in agents for use by others. The true strength of ACE, however, is as an

integration platform. Each user has a workspace which allows the possibility of blurring

the distinction between data in CAD drawings, analysis programs, and bid specifications.

ACE improves document consistency by providing the user with a central object

repository which reduces redundant data input and the associated risk of human error.”

“Beyond its ability to integrate design tools, ACE also has the ability to integrate

architects and engineers through a virtual workspace which is comprised of multiple

individual workspaces. Each user, and the agents they employ, contribute to an interest

set for their workspace. Once a project leader has added them to a design project, users

determine when to send and receive design information to other members of the design

team. Notification of object and relationship instantiation or modification is broadcast

over the virtual workspace based on each workspace's interest set, thus providing a

mechanism for intelligent data replication. The virtual workspace also supports conflict

detection, negotiation and resolution strategies to assist collaboration activities.”

9. Open Agent Architecture (OAA) (http://www.ai.sri.com/~oaa/)

Developed by SRI International, OAA is an open source, downloadable agent

development architecture with libraries available in as many as 8 programming

languages.

“When designing the Open Agent Architecture, we realized that it is imperative

that the human user must be able to interact with the collection of distributed agents as an

equal member of the community, not just as an outsider to whom is presented a result

http://www.ai.sri.com/%257eoaa/

117

once real agents have done all the work. Multiple agents can provide services for

retrieval, combination, and management of the growing amount of online information,

but this is only useful if controlling and interacting with the network of agents remains

less complicated than interacting with the online services themselves!”

“With this in mind, we designed the InterAgent Communication Language (ICL)

to be a logic-based declarative language capable of representing natural language

expressions. In addition, we incorporated techniques into the architecture for

communicating with agents using simultaneous multiple (natural) input modalities;

humans can point, speak, draw, handwrite, or use standard graphical user interface when

trying to get a point across to a collection of agents. The agents themselves will compete

and cooperate in parallel to translate the user's request into an ICL expression to be

handled. These techniques, in combination with the use of special class of agents called

Facilitator agents (Facilitator agents reason about the agent interactions necessary for

handling a given complex ICL expression), allow human users to closely interact with the

ever-changing community of distributed agents.”

Characteristics:

• Open: agents can be created in multiple programming languages and interface

with existing legacy systems.

• Extensible: agents can be added or replaced individually at runtime.

• Distributed: agents can be spread across any network-enabled computers.

• Parallel: agents can cooperate or compete on tasks in parallel.

118

• Mobile: lightweight user interfaces can run on handheld PDA's or in a web

browser using Java or HTML and most applications can be run through a

telephone-only interface.

• Multimodal: When communication with agents, handwriting, speech, pen gestures

and direct manipulation (GUIs) can be combined in a natural way.

10. STEAM (http://www.isi.edu/teamcore/tambe/steam/steam.html)

“STEAM was developed at the Information Science Institute, University of

Southern California, in Los Angeles, CA. STEAM is a general model of teamwork,

intended to enable agents to participate in coherent teamwork. It has so far been applied

in three different complex multi-agent domains. Two of the domains involve building

teams of pilot agents for distributed interactive simulation environments: (i) synthetic

helicopter attack, (ii) synthetic helicopter transports. A third domain is building a team of

virtual players for RoboCup simulated soccer. While synthetic pilot-teams based on

STEAM are currently participating in the STOW-97 exercises (virtual battlefield

exercises involving thousands of virtual and real entities), our player-team based on

STEAM won the third place in the RoboCup-97 synthetic soccer tournament held at

IJCAI-97 in Nagoya, Japan.”

“STEAM is currently based in Soar. A key component of STEAM is the notion of

a "team operator", which generalizes the use of operators in Soar. In particular, while

http://www.isi.edu/teamcore/tambe/steam/steam.html

119

operators are used by individuals to engage in individual activities, team operators are

those performed by multiple team members together, as a team --- of course, without a

physically shared memory. Team operators are based on the joint intentions framework;

please read the references above for pointers and other details. Team operators are

distinguished from normal individual operators, because they are tagged as modeling a

team activity, and because they activate the rules in the package listed below. However,

individual operators are also within STEAM scope, at least to the extent that they bear

upon team activities. Thus, STEAM's rules can apply to team operators, as well as

individual operators. (Simultaneously, it is possible to circumvent STEAM if you must,

since there are areas where STEAM falls short in modeling teamwork).”

11. Xraptor (http://www.informatik.uni-mainz.de/~polani/XRaptor/XRaptor.html)

“XRaptor is an environment for simulation of scenarios in continuous virtual

multi-agent worlds. It is written in C++ for UNIX platforms with the X Window System

and Motif 1.2. XRaptor allows studying the behavior of agents in different 2-D or 3-D

continuous worlds. In the current version an agent is either a point in its world, or

occupies a circular area or a spherical volume. It contains a sensor unit through which it

obtains information about the outside world as well as an actor unit through which it

performs actions. The agents are controlled by a user-defined control kernel. The control

kernel determines an agent's action based on the sensory input. A typical control kernel is

designed to maximize the agent's survival time. The user can construct an agent by

implementing concrete control kernels derived from abstract classes (i.e. classes with

http://www.informatik.uni-mainz.de/%257epolani/XRaptor/XRaptor.html

120

pure virtual methods) provided by the XRaptor environment, whose pure virtual methods

have to be overridden by the user.”

12. WebSim (http://www.isima.fr/andre/websim/)

“Web-based Simulation of Agent Behaviors. In this work we present a web-

based simulation of autonomous software agents enabling the user to change interactively

their behavior. The simulation is implemented in the Java language in order to be

incorporated into Web pages and run remotely. The main goal of this work is to provide

an example of distributed exploration environment, allowing online changes on the

behavioral model of a multiagent system, particularly when domain expert end users are

not locally present.”

13. SeSAm (http://ki-server.informatik.uni-

wuerzburg.de/~vki/sesam/SeSAm2/SeSAm-short.html)

“The SeSAm (Shell for Simulated Agent Systems) provides a generic

environment for modeling and experimenting with agent-based systems. We specially

focused on providing a framework for the easy construction of complex models.

Although the idea of a domain-independent multi-agent simulation environment is not

new, none of the existing environments fulfills the claim of usage without direct

programming. Despite of providing a powerful general architecture or a rather focused

one in many simulation environments the user has to program using a language that

provides some additional specialized concepts or classes, but still is based on the syntax

http://www.isima.fr/andre/websim/
http://ki-server.informatik.uni-wuerzburg.de/%257evki/sesam/SeSAm2/SeSAm-short.html
http://ki-server.informatik.uni-wuerzburg.de/%257evki/sesam/SeSAm2/SeSAm-short.html

121

of for example C++. SeSAm on the other side keeps the balance between generality and

easy usage.”

122

THIS PAGE INTENTIONALLY LEFT BLANK

123

APPENDIX B: RELATE RELEASE NOTES

 The sample simulations provided in this thesis are an excellent source for

simulation development using the RELATE architecture. It is intended that future

development start with the installation and running of these simulations. The sample

simulations cover a variety of situations and the future simulation developer should be

able to use “code reuse” of a variety of algorithms found in the code provided. The

following instructions are intended to give the user specific instructions to install and run

these Java-based applications.

1. Check to see if you have the latest Java build on your machine.

a. At the “C prompt” type: java –version. You should see something like:

java version "1.3.0"
Java(TM) 2 Runtime Environment, Standard Edition (build 1.3.0-C)
Java HotSpot(TM) Client VM (build 1.3.0-C, mixed mode)

The version should be “1.2.0” or higher.

2. If the latest Java JDK is not installed on the computer being used:

a. Copy the “j2sdk1_3_0-win.exe” file to the computers desktop, or other

temporary directory.

b. Double click the icon to start installation, or run the “.exe” file. Java

version 1.3.0 will be installed and set up on your machine.

124

c. Java Docs 1.3 are also included on the CD if you’re a developer and want

the latest from documentation from Sun.

3. Copy the folders: “ElFarol” and “Jacob” into a new folder of your own choice (we

recommend a new folder called RELATE).

4. To run the ElFarol and Jacob simulations simply double click, or run, the included

“.bat” files included in these directories. If you’re a little computer daring you can create

shortcuts on your desktop and direct them to run these “.bat” files.

5. Running Capture the Flag is a little more complicated than simply installing Java

and copying a few directories. We recommend going to

http://www.web3d.org/WorkingGroups/vrtp/dis-java-vrml/download.html and following

the installation instructions. Running this simulation requires your computer to be on a

LAN or at least have a network card (multicast capable) installed. Running Capture the

Flag requires that you use Netscape Navigator with a Cosmo player plug-in. These

programs are also available on the web site. The latest Capture the Flag build on the web

site includes all the RELATE code found in this thesis.

For the simulation developer: The complete code listing for all reference

simulations are included in the attached CD or is available at

http://www.npsnet.org/~moves/RELATE or http://www.roddy.net/Kim/Relate.zip . We

encourage any interested parties to look through the code and if there are any questions or

comments, please contact use through http://www.Roddy.net/Kim.

http://www.web3d.org/WorkingGroups/vrtp/dis-java-vrml/download.html
http://www.npsnet.org/%257emoves/RELATE
http://www.roddy.net/Kim/Relate.zip
http://www.roddy.net/Kim

125

APPENDIX C: RELATE DESIGN FOR EL FAROL

Relationship – RelationshipElFarol

Role – RoleBarMember

Goal – GoalHappy

 Rule – Rule1
 Rule – Rule2
 Rule – Rule3
 Rule – Rule4
 Rule – Rule5
 Rule – Rule6
 Rule – Rule7
 Rule – Rule8
 Rule – Rule9
 Rule – Rule10
 Rule – Rule11
 Rule – Rule12
 Rule – Rule13
 Rule – Rule14
 Rule – Rule15
 Rule – Rule16
 Rule – Rule17
 Rule – Rule18
 Rule – Rule19
 Rule – Rule20
 Rule – Rule21
 Rule – Rule22
 Rule – Rule23
 Rule – Rule24
 Rule – Rule25
 Rule – Rule26
 Rule – Rule27
 Rule – Rule28
 Rule – Rule29
 Rule – Rule30
 Rule – Rule31
 Rule – Rule32

126

Figure 30. El Farol Design

127

APPENDIX D: RELATE DESIGN FOR CTF AGENT

Relationship – RelationshipBlueSquad

Role – RoleSquadLeader

Goal – GoalCoordinate

 Rule – RuleCoordinate

Role – RoleSquadMember

Goal – GoalDefense

 Rule – RuleDefense1

Goal – GoalOffense

 Rule – RuleOffense1

Relationship – RelationshipRedSquad

Role – RoleSquadLeader

Goal – GoalCoordinate

 Rule – RuleCoordinate

Role – RoleSquadMember

Goal – GoalDefense

 Rule – RuleDefense1

Goal – GoalOffense

 Rule – RuleOffense1

128

Figure 31. CTFAgent Design

129

APPENDIX E: RELATE DESIGN FOR JACOB

Relationship – ArmyRelationship (BlueArmy & RedArmy)

Role – SoldierRole (RedSoldier & BlueSoldier)

Goal – MaximizeEnemyCasualites

 Rule – ShootAllPerceivedEnemyRule

Goal – SeekFriendly

Rule – MoveToClosestFriendlyRule

Goal – MinimizeInjury

Rule – DisengageEnemyRule

Goal – EngageEnemy

Rule – MoveToClosestEnemyRule

Relationship – SquadRelationship (BlueSquad & RedSquad)

Role – SquadLeaderRole

 Goal – CaptureEnemyFlagGoal

 Rule – MoveToEnemyFlagRule

 Goal – DefendOwnFlagGoal

 Rule – MoveToOwnFlagRule

 Goal – KeepSquadLeaderInformedGoal

 Rule – FullReportRule

 Goal – MaintainUnitCohesionGoal

 Rule – MoveToLeaderRule

130

Role – SquadMemberRole

 Goal – CaptureEnemyFlagGoal

 Rule – MoveToEnemyFlagRule

 Goal – DefendOwnFlagGoal

 Rule – MoveToOwnFlagRule

 Goal – KeepSquadLeaderInformedGoal

 Rule – FullReportRule

 Goal – MaintainUnitCohesionGoal

 Rule – MoveToLeaderRule

Relationship - CompanyRelationship

Role – CompanyCdrRole

 Goal – CaptureEnemyFlagGoal

 Rule – MoveToEnemyFlagRule

 Goal – DefendOwnFlagGoal

 Rule – MoveToOwnFlagRule

 Goal – KeepCompanyCommanderInformedGoal

 Rule – FullSquadReportRule

Role – CompanyMbrRole

 Goal – KeepCompanyCommanderInformedGoal

 Rule – FullSquadReportRule

131

Figure 32. JACOB Design

132

THIS PAGE INTENTIONALLY LEFT BLANK

133

LIST OF REFERENCES

Academy of Motion Picture Arts and Sciences (1997). Scientific And Engineering Award.
http://www.oscars.org/ampas/plsql/ampas_award.detail?primekey_in=199907071
6:28:14974243842 (30 Jul 00).

AgentBuilder (2000). AgentBuilder Home Page. http://www.agentbuilder.com/ (30 Jul

00).

Arthur, W. B. (1994). “Inductive Reasoning and Bounded Rationality (The El Farol

Problem).” American Economic Review (Papers and Proceedings), 84, 406-411,
1994.

Axtell, R., and Epstein, J. M. (1996). Growing Artificial Societies: Social Science from

the Bottom Up. Washington, D.C.: The Brookings Institute.

Axelrod, R. (1984). The Evolution of Cooperation. Perseus Books Group.

Axelrod, R. (1997). The Complexity of Cooperation: Agent-Based Models of

Competition and Collaboration. Princeton, NJ: Princeton University Press.

Briot, J. (1998). “Agents and Concurrent Objects” (An Interview with Les Gasser). IEEE

Concurrency. 6 (4); 74 -77, 81; 1998.

DECAF (2000). DECAF Agent Framework. http://www.eecis.udel.edu/~decaf/ (30 Jul

00).

DIS-Java-VRML (2000). Distributed Interactive Simulation DIS-Java-VRML Working

Group. http://web.nps.navy.mil/~brutzman/vrtp/dis-java-vrml/ (30 Jul 00).

Echo (2000). John Holland’s Echo. http://www.santafe.edu/projects/echo/ (30 Jul 00).

Ferber, J. (1999). Multi-Agent System: An Introduction to Distributed Artificial

Intelligence, (English edition) Harlow, England: Addison-Wesley.

Festschrift (1999). Festschrift in honor of John H. Holland, 15-18 May, 1999.

http://www.pscs.umich.edu/jhhfest/proceedings.html (30 Jul 00).

Fisher, R. (1958). The Genetical Theory of Natural Selection. New York, NY: Dover

Publications.

http://www.oscars.org/ampas/plsql/ampas_award.detail?primekey_in=1999070716:28:14974243842
http://www.oscars.org/ampas/plsql/ampas_award.detail?primekey_in=1999070716:28:14974243842
http://www.eecis.udel.edu/%257edecaf/
http://web.nps.navy.mil/%257ebrutzman/vrtp/dis-java-vrml/
http://www.santafe.edu/projects/echo/
http://www.pscs.umich.edu/jhhfest/proceedings.html

134

Franklin, S. and Graesser, A. (1996). “Is it an Agent, or just a Program?: A Taxonomy
for Autonomous Agents.” Proceedings of the Third International Workshop on
Agent Theories, Architectures, and Languages. Berlin: Springer-Verlag.

Gamecenter.com (1999). Will Wright on The Sims.

http://www.gamecenter.com/News/Item/0,3,0-2739,00.html (30 Jul 00).

Gasser, L., Braganza, C. and Herman, N. (1987). “MACE: A Flexible Testbed for

Distributed AI Research.” In Michael Huhns, ed., Distributed Artificial
Intelligence. Los Altos, CA: Morgan Kaufmann Publishers, Inc.

Gasser, L (2000). Les Gasser’s C.V. http://www.topintegration.com/les-cv.html (30 Jul

00).

Glance, N. and Huberman, B. (1994). “The Dynamics of Social Dilemmas.” Scientific

American, March 1994.

Hewitt, C. (1977). Viewing Control Structures as Patterns of Passing Messages.

Artificial Intelligence 8 (3); 323-364; 1977.

Hewitt, C. and Inman, J. (1991). “DAI Betwixt and Between: From ‘Intelligent Agents’

to Open Systems Science”. IEEE Transactions on Systems, Man, and
Cybernetics, 21 (6); 1409-1419; 1991.

Hiles, J. (1999). Course Notes for MV-4015 Agent-Based Autonomous Behavior for

Simulations. Winter, 2000, Naval Postgraduate School.

Holland, J. H. (1995). Hidden Order: How Adaptation Builds Complexity. Reading,

MA: Perseus Books.

Holland, J. H. (1998). Emergence. Reading, MA: Helix Books.

Hopkins, D. (2000). Designing User Interfaces to Simulation Games: A summary of Will

Wright’s talk. http://catalog.com/hopkins/simcity/WillWright.html (30 Jul 00).

Huhns, M. and Stephens, L. (1999). “Multiagent Systems and Societies of Agents.” In

Gerhard Weiss, ed., Multiagent Systems: A Modern Approach to Distributed
Artificial Intelligence. Cambridge, MA: The MIT Press.

IBM (1997). Mental Models and Game Play.

http://www.almaden.ibm.com/almaden/npuc97/1997/wright.htm (30 Jul 00).

http://www.gamecenter.com/News/Item/0,3,0-2739,00.html
http://www.topintegration.com/les-cv.html
http://catalog.com/hopkins/simcity/WillWright.html
http://www.almaden.ibm.com/almaden/npuc97/1997/wright.htm

135

Ilachinski, A. (1997). Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An
Artificial-Life Approach to Land Warfare. Center for Naval Analyses Research
Memorandum CRM 97-61.10, August 1997. Alexandria, VA: Center for Naval
Analyses

ISAAC (2000). Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-

Life Approach to Land Warfare. http://www.cna.org/isaac/extabs.htm (30 Jul 00).

JAFMAS (2000). JAFMAS: A Java-based Agent Framework for Multi-Agent Systems.

http://www.ececs.uc.edu/~abaker/JAFMAS/ (30 Jul 00).

JATLite (2000). JATLite. http://java.stanford.edu/ (30 Jul 00).

Knapik, M. and Johnson, J. (1998). Developing Intelligent Agents for Distributed

Systems. New York, NY: McGraw-Hill.

KQML (2000). What is KQML? http://www.cs.umbc.edu/kqml/whats-kqml.html (30 Jul

00).

Kuhn, T. (1962). The Structure of Scientific Revolutions, First edition, revised edition.

Chicago, IL: The University of Chicago Press.

Langton, C. (1989). Artificial Life: Sante Fe Institute studies in the sciences of

complexity. (Proc. Vol. VI). Reading, MA: Addison-Wesley.

Langton, C., Taylor, C., Farmer, J., and Rasmussen, S. (Ed.)(1990). Artificial Life II.

Addison-Wesley.

Langton, C. (Ed.) (1997). Artificial Life: An Overview. Cambridge, MA: The MIT Press.

Liekens, A. (2000). Alife Online 2.0. http://alife.org (30 Jul 00).

Maes, Pattie (1990). “Situated Agents Can Have Goals.” In Pattie Maes, ed., Designing

Autonomous Agents: Theory and Practice from Biology to Engineering and Back.
Special Issues of Robotics and Autonomous Systems, Cambridge, MA: MIT
Press.

Maes, Pattie (1995). “Modeling Adaptive Autonomous Agents.” In Chris Langton, ed.,

Artificial Life: An Overview, Complex Adaptive Systems series. Cambridge, MA:
The MIT Press.

http://www.cna.org/isaac/extabs.htm
http://www.ececs.uc.edu/%257eabaker/JAFMAS/
http://java.stanford.edu/
http://www.cs.umbc.edu/kqml/whats-kqml.html
http://alife.org/

136

Malone, T. (1988). “What is coordination theory and How Can It Help Design
Cooperative Work Systems?” Proceedings of the Conference on Computer-
Supported Cooperative Work, Oct 1990.

Maxis (1999). History of a Classic.

http://www.simcity.com/us/buildframes.phtml?guide/classic/history (30 Jul 00).

Maxis (2000). About The Sims. http://www.thesims.com/us/about/index.html (30 Jul 00).

Maxwell and Raab (1998). Representing C4ISR in JWARS: Theater Level Abstractions

and Modeling Principles (U).

Merriam-Webster (2000). Merriam-Webster OnLine: The Language Center.

http://www.m-w.com (30 Jul 00).

Minar, N., Burkhart, R., Langton, C., and Askenazi, M. (1996). The Swarm Simulation

System: A Toolkit for Building Multi-Agent Simulations.
http://www.swarm.org/intro.html (30 Jul 99).

Minsky, M. (1985). The Society of Mind. New York: Touchstone, Simon & Schuster.

MOVES (2000). Naval Postgraduate School Modeling, Virtual Environments &

Simulation (MOVES) Academic Group. http://www.npsnet.org/~moves/
(30 Jul 00).

National Research Council (NRC) (1998). Modeling Human and Organizational

Behavior: Applications to Military Simulations. Washington, D.C.: National
Academy Press.

Nwana, H. (1996). “Software Agents: An Overview.” In Knowledge Engineering Review,

Sept 1996. Cambridge University Press.

Resnick, M. (1998). Turtles, Termites, and Traffic Jams: Explorations in Massively

Parallel Microworlds. Cambridge, MA: The MIT Press.

Reynolds, C. W. (1982) “Computer Animation with Scripts and Actors”, in Computer

Graphics, 16(3) (SIGGRAPH 82 Conference Proceedings) pages 289-296.
http://www.red3d.com/cwr/papers/1982/ASAS82.html (30 Jul 00).

Reynolds, C. W. (1987) “Flocks, Herds, and Schools: A Distributed Behavioral Model”,

in Computer Graphics, 21(4) (SIGGRAPH 87 Conference Proceedings) pages 25-
34. http://www.red3d.com/cwr/papers/1987/boids.html (30 Jul 00).

http://www.simcity.com/us/buildframes.phtml?guide/classic/history
http://www.thesims.com/us/about/index.html
http://www.m-w.com/
http://www.swarm.org/intro.html
http://www.npsnet.org/%257emoves/
http://www.red3d.com/cwr/papers/1982/ASAS82.html
http://www.red3d.com/cwr/papers/1987/boids.html

137

Reynolds, C. (1999). Individual-Based Models. http://www.red3d.com/cwr/ibm.html (30
Jul 00).

Russell, S. and Norvig, P. (1995). Artificial Intelligence: A Modern Approach. Upper

Saddle River, NJ: Prentice-Hall, Inc.

Scott, John P. (1958). Animal Behavior. The College Library of Biological Sciences.

Chicago, IL: The University of Chicago Press.

SRI (2000). The Open Agent Architecture. http://www.ai.sri.com/~oaa/ (30 Jul 00).

Stites, J. (1997). And Then There Was A-Life: The Man Who Gave Birth to Artificial

Life, John Holland and the Thinking Machine.
http://www.omnimag.com/archives/features/alife (30 Jul 00).

Sugarscape (2000). Welcome to Sugarscape. http://www.brook.edu/SUGARSCAPE/

(30 Jul 00).

Swarm (2000). Swarm Development Group: Swarm. http://www.swarm.org/intro.html

(30 Jul 00).

Thinking Tools (1999). “Agent Based Adaptive Simulation Technology.”

http://www.thinkingtools.com/html/technology.html (2 Feb. 98) no longer
available.

Von Neumann, J. (1966). Theory of Self-Reproducing Automata. Edited and completed

by Arthur Burks. Urbana, IL: University of Illinois Press.

Weiss, G. (Ed.) (1999). Multiagent Systems: A Modern Approach to Distributed Artificial

Intelligence. Cambridge, MA: MIT Press.

Widman, L. and Loparo, K. (1989). “Artificial Intelligence, Simulation, and Modeling:

A Critical Survey.” In L. Widman, K. Loparo, and N Nielsen, eds., Artificial
Intelligence, Simulation & Modeling. New York, NY: John Wiley & Sons.

Wired (1994). “Will Wright: The Mayor of SimCity.” Wired Archive 2.01. Jan 1994.

http://www.wired.com/wired/archive/2.01/wright.html (30 Jul 00).

Wooldridge, M. and Jennings, N. R. (1995). “Intelligent Agents: Theory and Practice.”

Knowledge Engineering Review, October 1994. Cambridge University Press.

Zeus (2000). The Zeus Agent Building Toolkit.
http://193.113.209.147/projects/agents/zeus/index.htm (30 Jul 00).

http://www.red3d.com/cwr/ibm.html
http://www.ai.sri.com/%257eoaa/
http://www.omnimag.com/archives/features/alife
http://www.brook.edu/SUGARSCAPE/
http://www.swarm.org/intro.html
http://www.thinkingtools.com/html/technology.html
http://www.wired.com/wired/archive/2.01/wright.html
http://193.113.209.147/projects/agents/zeus/index.htm

138

THIS PAGE INTENTIONALLY LEFT BLANK

139

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
8725 John J. Kingman Road, Suite 0944
Fort Belvoir, Virginia 22060-6218

2. Dudley Knox Library 2

Naval Postgraduate School
411 Dyer Road
Monterey, California 93943-5101

3. RADM Richard W. Mayo 1

CNO, N6
2000 Navy Pentagon
Washington, DC 20350-2000

4. CDR George Phillips, USN (Ret) 1
CNO, N6M1
2000 Navy Pentagon
Washington, DC 20350-2000

5. Dr. Allen Zeman 1

CNO, N7B
2000 Navy Pentagon
Washington, DC 20350-2000

6. AFIT Academic Library 1
ATTN: Barry Boettcher
2950 P Street
Area B, Building 642
AFIT/LDR
Wright Patterson AFB, Ohio 45433-7765

7. W. Lewis Johnson 1

Director, Center for Advanced Research in Technology for Education (CARTE)
University of Southern California / Information Sciences Institute,
4676 Admiralty Way
Marina del Rey, California 90292

140

8. Mr. John Hiles 1
Research Professor
MOVES Academic Group
Naval Postgraduate School
Monterey, California 93943-5118

9. MOVES Academic Group Reference Library 1
Attn: Michael Zyda
Chair, MOVES Academic Group
Naval Postgraduate School
Monterey, California 93943-5118

10. LCDR Kimberly A. Roddy 1

7879 Amethyst Loop Road, NW
Bremerton, Washington 98312-1077

11. Tamara Velikonia 1
7045 Sonoma Highway
Santa Rosa, California 95409

12. LT Michael Dickson 1

S. 3019 Wilbur RD
Spokane, Washington 99206

13. Joan K. Grommet 1
S. 3019 Wilbur RD
Spokane, Washington 99206

	INTRODUCTION
	MOTIVATION
	GOALS
	ORGANIZATION

	BACKGROUND
	INTRODUCTION
	KEY CONCEPTS AND TERMS
	Agent
	Multi-Agent System (MAS)
	MAS Simulations
	Relationship
	Coordination
	Adaptation

	ABBREVIATED HISTORY OF MULTI-AGENT SYSTEMS
	Holland
	Foundations of MAS
	Distributed Artificial Intelligence (DAI)
	Artificial Life (A-Life)

	Significant MAS Simulations
	MACE
	Echo
	Swarm
	SimCity
	ISAAC

	SUITABILITY OF MULTI-AGENT SYSTEM SIMULATIONS
	SURVEY OF SIMILAR MAS SIMULATION ARCHITECTURES
	OAA
	JAFMAS
	Zeus
	JATLite
	DECAF Agent Framework

	MAS SIMULATIONS OF HUMAN AND ORGANIZATIONAL BEHAVIOR
	Sugarscape
	Iterated Prisoner’s Dilemma
	Unscrupulous Diner’s Dilemma
	TheSims(

	SUMMARY

	RELATE DESIGN PARADIGM AND ARCHITECTURE
	INTRODUCTION
	RELATE DESIGN PARADIGM
	Relationships
	Environment
	Laws
	Agents
	Things
	Effectors

	BALLOON ANALOGY
	Strings
	Balloons
	Finding a Balloon
	Buying a Balloon
	Balloons That Pull
	Life With Lots Of Balloons

	A RECIPE FOR MAS SIMULATIONS USING RELATE
	Define All Possible Relationships
	Identify Roles For Each Relationship
	Determine Goal/Rule/Action Types
	Determine Goals For Each Role
	Determine Rules For Each Goal
	Determine Feedback Mechanism For Each Goal
	Determine Credit Assignment For Each Rule
	Implement Design By Satisfying RELATE Interfaces
	Use Reference Cases As A Starting Point For GUI Development

	RELATE JAVA CLASS AND INTERFACE DEFINITIONS
	Public Class RelationshipManager
	Public Abstract Class Thing Extends Object
	Public Abstract Class Agent Extends Thing
	Public Interface Relationship
	Public Interface Role
	Public Interface Goal
	Public Interface Rule
	Public Interface Personality
	Public Interface SensedEnvironment
	Public Interface Sensor
	Public Interface Action

	SUMMARY

	AN INTRODUCTORY MAS SIMULATION
	INTRODUCTION
	BRIAN ARTHUR’S EL FAROL BAR PROBLEM
	A RELATE RECIPE FOR THE EL FAROL BAR PROBLEM
	Relationships
	Roles
	Goal/Rule/Action Types
	Goals
	Rules
	Feedback Mechanism
	Credit Assignment

	A RELATE SOLUTION
	El Farol Rules
	Graphical Output

	SUMMARY

	ADDING AGENTS TO A NETWORKED DIS-JAVA-VRML SIMULATION
	INTRODUCTION
	CAPTURE THE FLAG
	A RELATE RECIPE FOR CTF AGENT
	Relationships
	Roles
	Goal/Rule/Action Types
	Goals
	Rules For Each Goal
	Goal Feedback Mechanisms
	Rule Credit Assignment

	A RELATE SOLUTION
	Red and Blue Start Panels
	Tank Agent
	Engaging Enemy Units
	Offensive Tank Agent
	Defensive Tank Agent

	Helicopter Agent
	Squad Relationship
	Future CTF Agent Work

	SUMMARY

	A SITUATED LAND-COMBAT MODEL
	INTRODUCTION
	JACOB (SON OF ISAAC)
	A RELATE RECIPE FOR JACOB
	Relationships
	Roles
	Goal/Rule/Action Types
	Goals
	Rules For Each Goal
	Goal Feedback Mechanisms
	Rule Credit Assignment

	A RELATE SOLUTION
	Simulation Agent Editor
	Loading and Saving Environments
	Using An Open Environment
	Loading A Stored Environment
	Creating A New Environment

	Starting The Simulation
	Pausing The Simulation
	The Brain Lid
	Dynamic Goal Selection
	Forming A New Squad
	Waiting For Stragglers

	Agent Statistics

	SUMMARY

	CONCLUSIONS AND RECOMMENDATIONS
	CONCLUSION
	RECOMMENDATIONS

